Research Article
BibTex RIS Cite

Researching the Production Features of Surgical Instrument Manufacturing with 3D Printing

Year 2023, Volume: 7 Issue: 2, 188 - 194, 31.12.2023
https://doi.org/10.46460/ijiea.1384227

Abstract

The process of 3D printing begins with creating a digital 3D model of the object to be printed using CAD software. This model is then sliced into thin cross-sectional layers, which are used as a guide for the 3D printer to deposit material layer by layer. The printer follows the instructions from the digital model and adds material, typically plastic, metal, or composite, to build up the final 3D object. One of the key advantages of 3D printing is its ability to produce complex geometries that are difficult or impossible to achieve with traditional manufacturing methods. This allows for the creation of lightweight and optimized designs, reducing material waste and improving the overall performance of the finished product.
This study investigates the feasibility of SLA technology (Stereolithography) as a production method as a practical alternative for surgical instrument manufacturing. Although there are many studies on obtaining accurate prints with SLA 3D device, research on the production of surgical instruments is insufficient. For this purpose, an experimental study was conducted using an SLA type 3D printer, examining the hardware and software components in terms of print quality. First , the same size prints were taken of the tools whose geometries were scanned with a 3D scanner.
The purpose of this article is to conduct detailed research on the feasibility of lower-cost, 3D printing technology in surgical instrument manufacturing. An application was made and shared regarding the use of printed tools in artificial leather working sets.

References

  • U.S. Department of Health and Human Services (2021). Louissaint N. In: Review: Medical Supply Chain Responses to the COVID-19 Pandemic.; 2020. Retrieved January 2, 2022 from https://files.asprtracie.hhs.gov/documents/2020-in-review-m edical-supply-chain-responses-to-the-covid-19-pandemic.pdf.
  • Bhaskar, S., Tan, J., Bogers, M. L., Minssen, T., Badaruddin, H., Israeli-Korn, S., & Chesbrough, H. (2020). At the epicenter of COVID-19–the tragic failure of the global supply chain for medical supplies. Frontiers in public health, 821.
  • New York Times (2021). Goodman PS. How the Supply Chain Upheaval Became a Life-Or-Death Threat. Retrieved 5 January, 2022. from https://www.nytimes.com/2021/12/09/business/supply-chain-medical-device-sh ortages.html.
  • Francis, A., Williams, J., Prey, B., Lammers, D., Vu, M., Jones, I., ... & Bingham, J. (2023). Rapid cold sterilization of 3D printed surgical instruments for the austere environment. The American Journal of Surgery, 225(5), 909-914.
  • Finnes, T. (2015). High definition 3d printing–comparing sla and fdm printing technologies. The Journal of Undergraduate Research, 13(1), 3.
  • Cingöz, İ. D., Özyörük, Ş., HÜSEMOĞLU, B., & ŞAHİN, M. C. (2019). Surgery Dissector: Surgical Device Production with 3d Print Technology. Journal of Medical Innovation and Technology, 1(1), 5-8.
  • Keßler, A., Dosch, M., Reymus, M., & Folwaczny, M. (2022). Influence of 3D-printing method, resin material, and sterilization on the accuracy of virtually designed surgical implant guides. The Journal of Prosthetic Dentistry, 128(2), 196-204.
  • Uddin, M. J., Scoutaris, N., Economidou, S. N., Giraud, C., Chowdhry, B. Z., Donnelly, R. F., & Douroumis, D. (2020). 3D printed microneedles for anticancer therapy of skin tumours. Materials Science and Engineering: C, 107, 110248.
  • Xu, X., Goyanes, A., Trenfield, S. J., Diaz-Gomez, L., Alvarez-Lorenzo, C., Gaisford, S., & Basit, A. W. (2021). Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. Materials Science and Engineering: C, 120, 111773.
  • Hubs 2022. Retrieved 5 January, 2022 from https://www.hubs.com/knowledge-base/what-is-sla-3d-printing/
  • T. Wohlers, & T. Gornet (2016). Wohlers Report. Wohler Associates Inc., USA, 2016.
  • Sürmen, H. K. (2019). Eklemeli Imalat (3b Baski): Teknolojiler ve Uygulamalar. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 373-392.
  • Piedra-Cascón, W., Krishnamurthy, V. R., Att, W., & Revilla-León, M. (2021). 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. Journal of Dentistry, 109, 103630.
  • Başcı, Ü. G., & Yamanoğlu, R. (2022). Havuz Fotopolimerizasyonu (HFP) ile Eklemeli İmalat. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(2), 914-928.
  • Hubs (2022). Retrieved 5 January, 2022 from https://www.hubs.com/knowledge-base/what-is-sla-3d-printing/
  • Protolabs (2022). Retrieved 5 January, 2022 from https://www.protolabs.com/engb/resources/blog/stereolithography-advantages-and-disadvantages/
  • Hubs (2022). Retrieved 5 January, 2022 from https://www.3dstereolithography.com/advantages-and-disadvantages/
  • Zulfiqar Ali August (2015). Process Modeling For Projection Based Stereo Lithography, (Master’s Dissertation, Bilkent University).
  • Robotistan (2022). Retrieved 5 February from https://www.robotistan.com/3d-tarayici
  • Infotron (2022). Retrieved 6 February, 2022 from https://infotron.com.tr/3-boyutlu-teknolojiler/3d-tarayici

Cerrahi Alet İmalatının 3 Boyutlu Yazıcı ile Üretim Özelliklerinin Araştırılması

Year 2023, Volume: 7 Issue: 2, 188 - 194, 31.12.2023
https://doi.org/10.46460/ijiea.1384227

Abstract

Eklemeli imalat olarak da bilinen üç boyutlu (3D) baskı, malzemelerin katman katman üst üste bindirildiği katmanlı üretim prensibine dayanmaktadır. Bu teknoloji, bilgisayar destekli tasarım (CAD) modeline göre katı modelleme kullanarak malzemeyi doğru bir şekilde biriktirerek herhangi bir karmaşık şekle sahip bileşenleri hızlı bir şekilde üretmek için kullanılabilir.
Bu çalışmada cerrahi alet imalatı için , pratik bir alternatif 3 boyutlu olarak SLA (Sterolitografi) ile teknolojisinin uygulanabilirliğini üretim yöntemi olarak araştırmaktadır. SLA 3D cihazlarıyla doğru baskıların elde edilmesi üzerine birçok çalışma olmasına rağmen, cerrahi aletlerin üretimi hakkında yapılan araştırmalar yetersizdir. Bu amaçla SLA tipi 3D yazıcı kullanarak baskı kalitesi açısından donanım ve yazılım bileşenleri incelenen deneysel bir çalışma yapılmıştır. Öncelikle 3 boyutlu tarayıcı ile geometrileri taranan aletlerin aynı boyutta baskıları alınmıştır.
Bu makalenin amacı, daha düşük maliyetli, 3 boyutlu baskı teknolojisinin cerrahi alet imalatında kullanılabilirliği hakkında ayrıntılı araştırma yapmaktır. Yapay deri çalışma setlerinde baskısı alınan aletlerin kullanımına ilişkin uygulama yapılarak paylaşılmıştır.

References

  • U.S. Department of Health and Human Services (2021). Louissaint N. In: Review: Medical Supply Chain Responses to the COVID-19 Pandemic.; 2020. Retrieved January 2, 2022 from https://files.asprtracie.hhs.gov/documents/2020-in-review-m edical-supply-chain-responses-to-the-covid-19-pandemic.pdf.
  • Bhaskar, S., Tan, J., Bogers, M. L., Minssen, T., Badaruddin, H., Israeli-Korn, S., & Chesbrough, H. (2020). At the epicenter of COVID-19–the tragic failure of the global supply chain for medical supplies. Frontiers in public health, 821.
  • New York Times (2021). Goodman PS. How the Supply Chain Upheaval Became a Life-Or-Death Threat. Retrieved 5 January, 2022. from https://www.nytimes.com/2021/12/09/business/supply-chain-medical-device-sh ortages.html.
  • Francis, A., Williams, J., Prey, B., Lammers, D., Vu, M., Jones, I., ... & Bingham, J. (2023). Rapid cold sterilization of 3D printed surgical instruments for the austere environment. The American Journal of Surgery, 225(5), 909-914.
  • Finnes, T. (2015). High definition 3d printing–comparing sla and fdm printing technologies. The Journal of Undergraduate Research, 13(1), 3.
  • Cingöz, İ. D., Özyörük, Ş., HÜSEMOĞLU, B., & ŞAHİN, M. C. (2019). Surgery Dissector: Surgical Device Production with 3d Print Technology. Journal of Medical Innovation and Technology, 1(1), 5-8.
  • Keßler, A., Dosch, M., Reymus, M., & Folwaczny, M. (2022). Influence of 3D-printing method, resin material, and sterilization on the accuracy of virtually designed surgical implant guides. The Journal of Prosthetic Dentistry, 128(2), 196-204.
  • Uddin, M. J., Scoutaris, N., Economidou, S. N., Giraud, C., Chowdhry, B. Z., Donnelly, R. F., & Douroumis, D. (2020). 3D printed microneedles for anticancer therapy of skin tumours. Materials Science and Engineering: C, 107, 110248.
  • Xu, X., Goyanes, A., Trenfield, S. J., Diaz-Gomez, L., Alvarez-Lorenzo, C., Gaisford, S., & Basit, A. W. (2021). Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. Materials Science and Engineering: C, 120, 111773.
  • Hubs 2022. Retrieved 5 January, 2022 from https://www.hubs.com/knowledge-base/what-is-sla-3d-printing/
  • T. Wohlers, & T. Gornet (2016). Wohlers Report. Wohler Associates Inc., USA, 2016.
  • Sürmen, H. K. (2019). Eklemeli Imalat (3b Baski): Teknolojiler ve Uygulamalar. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 373-392.
  • Piedra-Cascón, W., Krishnamurthy, V. R., Att, W., & Revilla-León, M. (2021). 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. Journal of Dentistry, 109, 103630.
  • Başcı, Ü. G., & Yamanoğlu, R. (2022). Havuz Fotopolimerizasyonu (HFP) ile Eklemeli İmalat. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(2), 914-928.
  • Hubs (2022). Retrieved 5 January, 2022 from https://www.hubs.com/knowledge-base/what-is-sla-3d-printing/
  • Protolabs (2022). Retrieved 5 January, 2022 from https://www.protolabs.com/engb/resources/blog/stereolithography-advantages-and-disadvantages/
  • Hubs (2022). Retrieved 5 January, 2022 from https://www.3dstereolithography.com/advantages-and-disadvantages/
  • Zulfiqar Ali August (2015). Process Modeling For Projection Based Stereo Lithography, (Master’s Dissertation, Bilkent University).
  • Robotistan (2022). Retrieved 5 February from https://www.robotistan.com/3d-tarayici
  • Infotron (2022). Retrieved 6 February, 2022 from https://infotron.com.tr/3-boyutlu-teknolojiler/3d-tarayici
There are 20 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Articles
Authors

Fatma Nazlı Özsolak 0000-0001-6312-8675

Early Pub Date December 29, 2023
Publication Date December 31, 2023
Submission Date October 31, 2023
Acceptance Date December 21, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Özsolak, F. N. (2023). Researching the Production Features of Surgical Instrument Manufacturing with 3D Printing. International Journal of Innovative Engineering Applications, 7(2), 188-194. https://doi.org/10.46460/ijiea.1384227
AMA Özsolak FN. Researching the Production Features of Surgical Instrument Manufacturing with 3D Printing. IJIEA. December 2023;7(2):188-194. doi:10.46460/ijiea.1384227
Chicago Özsolak, Fatma Nazlı. “Researching the Production Features of Surgical Instrument Manufacturing With 3D Printing”. International Journal of Innovative Engineering Applications 7, no. 2 (December 2023): 188-94. https://doi.org/10.46460/ijiea.1384227.
EndNote Özsolak FN (December 1, 2023) Researching the Production Features of Surgical Instrument Manufacturing with 3D Printing. International Journal of Innovative Engineering Applications 7 2 188–194.
IEEE F. N. Özsolak, “Researching the Production Features of Surgical Instrument Manufacturing with 3D Printing”, IJIEA, vol. 7, no. 2, pp. 188–194, 2023, doi: 10.46460/ijiea.1384227.
ISNAD Özsolak, Fatma Nazlı. “Researching the Production Features of Surgical Instrument Manufacturing With 3D Printing”. International Journal of Innovative Engineering Applications 7/2 (December 2023), 188-194. https://doi.org/10.46460/ijiea.1384227.
JAMA Özsolak FN. Researching the Production Features of Surgical Instrument Manufacturing with 3D Printing. IJIEA. 2023;7:188–194.
MLA Özsolak, Fatma Nazlı. “Researching the Production Features of Surgical Instrument Manufacturing With 3D Printing”. International Journal of Innovative Engineering Applications, vol. 7, no. 2, 2023, pp. 188-94, doi:10.46460/ijiea.1384227.
Vancouver Özsolak FN. Researching the Production Features of Surgical Instrument Manufacturing with 3D Printing. IJIEA. 2023;7(2):188-94.