Research Article
BibTex RIS Cite

L-Askorbik asit (C vitamini) Tayinine Yönelik Kalem Grafit Elektrot-Askorbat Oksidaz Temelli Yeni Bir Biyosensör Geliştirilmesi

Year 2022, , 611 - 626, 15.12.2022
https://doi.org/10.38001/ijlsb.1189195

Abstract

Bu çalışmada, biyosensör teknolojisi için özgün ve yeni bir bakış açısı katmak maksadıyla PGE kullanılarak L-askorbik asit analizi için yeni bir sensör geliştirilmiştir. Askorbat oksidaz enzimi glutaraldehid ve jelatin kullanılarak çapraz bağlanmış, kalem grafit elektrot yüzeyinde tutturulmuştur ve geliştirilen biyosensör L-askorbik asit tayini için kullanılmıştır. Ölçümler amperometrik yöntem kullanılarak tüketilen oksijen miktarı ile orantısal akım değerlerindeki azalmanın belirlenmesi ile yapılmıştır. Tasarlanan biyosensör ile L-askorbik asit ölçümleri -0.7 V’ta amperometrik yöntem ile gerçekleştirilmiştir. Optimizasyon çalışmalarından PGE/jelatin- glutaraldehit/askorbat oksidaz modifiye biyosensör için askorbat oksidaz konsantrasyonu, glutaraldehitte bekletme süresi, jelatin miktarı, ve glutaraldehit tabakalandırma sayısı sırasıyla 1,5 U/mL, 3 dakika, 20 mg ve 3 kez olarak analiz edilmiştir. Kullanılan Potasyum fosfat tamponu (pH:7, 50 mM) ve 30°C’de optimum çalışma koşullarını sağladığı belirlenmiştir. PGE/jelatin- glutaraldehit/askorbat oksidaz biyosensörü için karakterizasyon çalışmalarında doğrusal tayin aralığı 25µM - 500µM bulunmuştur. Sonuçlarına ilişkin olarak % varyasyon katsayısı (V.K) = 0,44 ve standart sapma (S.S) = ±1,46 µM olarak belirlenmiştir. Depolama kararlılığına ilişkin yapılan denemeler sonucunda 4 haftalık sürecin sonunda %75’lik aktivitenin korunduğu tespit edilmiştir.

Supporting Institution

Ege Üniversitesi

Project Number

2014 FEN 016

References

  • Abd-Allah, H., et al., Nicotinamide and ascorbic acid nanoparticles against the hepatic insult induced in rats by high fat high fructose diet: A comparative study, Life Sciences, 2020. 263. p. 118540.
  • El-Gendy, Z.A., et al., Potential hepatoprotective effect of combining vitamin C and l-carnitine against acetaminophen induced hepatic injury and oxidative stress in rats, International Journal of PharmaTech Research, 2016. 9. p. 33–47.
  • Abdulrazzaq, A.M., et al., Hepatoprotective Actions of Ascorbic Acid, Alpha Lipoic Acid and Silymarin or Their Combination Against Acetaminophen-Induced Hepatotoxicity in Rats, Medicina (B. Aires), 2019. 55. p. 181.
  • Zou, M.Y., et al., Ascorbic acid induced degradation of polysaccharide from natural products: a review,International Journal of Biological Macromolecules ,2020.151. p. 483–491.
  • Valko, M., et al., Redox- and non-redox-metal-induced formation of free radicals and their role in human disease, Archives of Toxicology, 2016. 90. p. 1–37.
  • Schoenfeld, J.D., et al., Redox active metals and H2O2 mediate the increased efficacy of pharmacological ascorbate in combination with gemcitabine or radiation in pre-clinical sarcoma models, Redox Biology, 2018. 14. p. 417–422.
  • Du, J., Cullen, J.J, and Buettner, G.R., Ascorbic acid: Chemistry, biology and the treatment of cancer, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer , 2012. 1826. p. 443–457.
  • Minor, E.A., et al., Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine, Journal Biological Chemistry, 2013. 288. p. 13669–13674.
  • Moser, M. and Chun, O., Vitamin C and Heart Health: A Review Based on Findings from Epidemiologic Studies, International Journal of Molecular Sciences , 2016. 17. P. 1328.
  • Karakurt, I., et al., Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study, International Journal of Pharmaceutics, 2020. 584. p. 1–9.
  • Lin, W., et al., Hemin-intercalated layer-by-layer electropolymerized co-deposition of bisphenol A on carbon nanotubes for dual electrocatalysis towards ascorbate oxidation and oxygen reduction, Electrochimica Acta, 2020. 340. P. 135946.
  • Rueda, M., Aldaz, A. and Sanchez-Burgos, F., Oxidation of L-ascorbic acid on a gold electrode, Electrochimica Acta, 1978. 23. p. 419–424.
  • Mondal, S. K., et al ., Electrooxidation of ascorbic acid on polyaniline and its implications to fuel cells, Journal Power Sources, 2005. 145. p. 16–20.
  • Osial, M., et al., Hybrid polyindole gold nanobrush for electrochemical oxidation of ascorbic acid, Journal of Electroanalytical Chemistry, 2020. 877.
  • Zhang, J., et al., Determination of ascorbic acid and ascorbate oxidase based on quaternary CuInZnS QDs/thiochrome ratiometric fluorescence sensing system, Talanta, 2020. 214. p. 120814.
  • Wang, Y. H., et al., Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation, Water Research, 2019. 154. p. 246–257
  • Qian, X., et al., Separation/Determination of Flavonoids and Ascorbic Acid in Rat Serum and Excrement by Capillary Electrophoresis with Electrochemical Detection, Analytical Sciences , 2010. 26. p. 557–560
  • Liu, K., et al., Online electrochemical monitoring of dynamic change of hippocampal ascorbate: Toward a platform for in vivo evaluation of antioxidant neuroprotective efficiency against cerebral ischemia injury, Analytical Chemistry, 2013. 85. p. 9947–9954.
  • Sun, C. L., et al., Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid, ACS Nano, 2011, 5. p. 7788–7795.
  • Koblová, P., et al., Development and validation of a rapid HPLC method for the determination of ascorbic acid, phenylephrine, paracetamol and caffeine using a monolithic column, Analytical Methods, 2012. 4. p. 1588–1591.
  • Wang, Z., Teng, X. and Lu, C., Carbonate interlayered hydrotalcites-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of ascorbic acid, Analyst, 2012. 137. p. 1876–1881.
  • Peng, J., et al,. Ding, A rapid, sensitive and selective colorimetric method for detection of ascorbic acid, Sensors and Actuators B:Chemical, 2015. 221. p. 708–716.
  • Chen, J., et al., Reduced graphene oxide nanosheets functionalized with poly(styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid, Microchimica Acta ,2016. 183. p. 1847–1853.
  • Wang, X., Watanabe, H. and Uchiyama, S., Amperometric l-ascorbic acid biosensors equipped with enzyme micelle membrane, Talanta, 2008. 74. p. 1681–1685.
  • Chauhan, N., Dahiya, T. and Priyanka-Pundir, C. S., Fabrication of an amperometric ascorbate biosensor using egg shell membrane bound Lagenaria siceraria fruit ascorbate oxidase, Journal of Molecular Catalysis B:Enzymatic ,2010. 67. p. 66–71.
  • Liu, M., et al., A stable sandwich-type amperometric biosensor based on poly(3,4- ethylenedioxythiophene)-single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid, Sensors and Actuators B:Chemical , 2011. 159. p. 277–285.
  • Dodevska, T., Horozova, E. and Dimcheva, N., Electrochemical behavior of ascorbate oxidase immobilized on graphite electrode modified with Au-nanoparticles, Materials Sciences nd Engineering B:Solid-State Materiasl for Advanced Technology , 2013. 178. p. 1497–1502.
  • Liu M., et al., An Amperometric Biosensor Based on Ascorbate Oxidase Immobilized in Poly(3,4-ethylenedioxythiophene)/Multi-Walled Carbon Nanotubes Composite Films for the Determination of L-Ascorbic Acid, Analytical Sciences, 2011. 27 . p. 477.
  • Csiffáry, G., et al., Ascorbate oxidase-based amperometric biosensor for L-ascorbic acid determination in beverages, Food Technology Biotechnology, 2016. 54. p. 31–35.
  • Kannoujia, D. K., Kumar, S. and Nahar, P., Covalent immobilization of ascorbate oxidase onto polycarbonate strip for l-ascorbic acid detection, Journal of Bioscience Bioengineering, 2012. 114. p. 402–404.
  • Akyilmaz, E., Guvenc, C. and Koylu, H., A novel mıcrobıal bıosensor system based on C. tropicalis yeast cells for selectıve determınatıon of L-Ascorbıc acid, Bioelectrochemistry, 2020. 132.
  • Gao, W., Song, J. and Wu, N., Voltammetric behavior and square-wave voltammetric determination of trepibutone at a pencil graphite electrode, Journal Electroanalytical Chemistry, 2005. 576. p. 1–7.
  • Erdem, A., Congur, G. and Mese, F., Electrochemical Detection of Activated Protein C Using an Aptasensor Based on PAMAM Dendrimer Modified Pencil Graphite Electrodes, Electroanalysis, 2014. 26. p. 2580–2590.
  • Kawde, A. N., et al., A facile fabrication of platinum nanoparticle-modified graphite pencil electrode for highly sensitive detection of hydrogen peroxide, Journal Electroanalytical Chemistry, 2015. 740. p. 68–74.

A new Biosensor Development Pencil on Based Graphite Electrode-Ascorbate Oxidase for Dtermination of L-ascorbic acid (C Vitamin)

Year 2022, , 611 - 626, 15.12.2022
https://doi.org/10.38001/ijlsb.1189195

Abstract

In this study, in respect to provide an novel and inventive viewpoint, a new assay for analysis of L-ascorbic acid was enhanced using PGE. Ascorbat oxidase was crosswise bounded using gluteraldehyde and gelatine, stable to the surface of pencil graphite electrode and devised biosensor was used for the detection of ascorbic acid. L-ascorbic acid measuring were done amperometrically at -0.7 V using the improved biosensor. For the PGE/gelatine- glutaraldehyde /ascorbate oxidase biosensor ascorbate oxidase concentration, holding time in glutaradehyde, gelatine amount and glutaraldehyde stratifying repat cycle were determined to be 1.5 U/mL, 3minutes, 20 mg and 3 times stratification in turn after optimization works. Potassium phosphate buffer (pH:7, 50 mM) and 30ºC warmth determined to procure optimum labouring conditions. After the characterization labours, 25 µM - 500 µM detection space was provide to be linear for PGE/gelatine- glutaraldehyde/ascorbate oxidase biosensor. Regarding the results, the % coefficient of variation (V.K) = 0.44 and the standard deviation (S.S) = ±1.46 µM. As a result of the experiments on storage stability, it was determined that 75% activity was preserved at the end of the 4-week period.

Project Number

2014 FEN 016

References

  • Abd-Allah, H., et al., Nicotinamide and ascorbic acid nanoparticles against the hepatic insult induced in rats by high fat high fructose diet: A comparative study, Life Sciences, 2020. 263. p. 118540.
  • El-Gendy, Z.A., et al., Potential hepatoprotective effect of combining vitamin C and l-carnitine against acetaminophen induced hepatic injury and oxidative stress in rats, International Journal of PharmaTech Research, 2016. 9. p. 33–47.
  • Abdulrazzaq, A.M., et al., Hepatoprotective Actions of Ascorbic Acid, Alpha Lipoic Acid and Silymarin or Their Combination Against Acetaminophen-Induced Hepatotoxicity in Rats, Medicina (B. Aires), 2019. 55. p. 181.
  • Zou, M.Y., et al., Ascorbic acid induced degradation of polysaccharide from natural products: a review,International Journal of Biological Macromolecules ,2020.151. p. 483–491.
  • Valko, M., et al., Redox- and non-redox-metal-induced formation of free radicals and their role in human disease, Archives of Toxicology, 2016. 90. p. 1–37.
  • Schoenfeld, J.D., et al., Redox active metals and H2O2 mediate the increased efficacy of pharmacological ascorbate in combination with gemcitabine or radiation in pre-clinical sarcoma models, Redox Biology, 2018. 14. p. 417–422.
  • Du, J., Cullen, J.J, and Buettner, G.R., Ascorbic acid: Chemistry, biology and the treatment of cancer, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer , 2012. 1826. p. 443–457.
  • Minor, E.A., et al., Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine, Journal Biological Chemistry, 2013. 288. p. 13669–13674.
  • Moser, M. and Chun, O., Vitamin C and Heart Health: A Review Based on Findings from Epidemiologic Studies, International Journal of Molecular Sciences , 2016. 17. P. 1328.
  • Karakurt, I., et al., Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study, International Journal of Pharmaceutics, 2020. 584. p. 1–9.
  • Lin, W., et al., Hemin-intercalated layer-by-layer electropolymerized co-deposition of bisphenol A on carbon nanotubes for dual electrocatalysis towards ascorbate oxidation and oxygen reduction, Electrochimica Acta, 2020. 340. P. 135946.
  • Rueda, M., Aldaz, A. and Sanchez-Burgos, F., Oxidation of L-ascorbic acid on a gold electrode, Electrochimica Acta, 1978. 23. p. 419–424.
  • Mondal, S. K., et al ., Electrooxidation of ascorbic acid on polyaniline and its implications to fuel cells, Journal Power Sources, 2005. 145. p. 16–20.
  • Osial, M., et al., Hybrid polyindole gold nanobrush for electrochemical oxidation of ascorbic acid, Journal of Electroanalytical Chemistry, 2020. 877.
  • Zhang, J., et al., Determination of ascorbic acid and ascorbate oxidase based on quaternary CuInZnS QDs/thiochrome ratiometric fluorescence sensing system, Talanta, 2020. 214. p. 120814.
  • Wang, Y. H., et al., Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation, Water Research, 2019. 154. p. 246–257
  • Qian, X., et al., Separation/Determination of Flavonoids and Ascorbic Acid in Rat Serum and Excrement by Capillary Electrophoresis with Electrochemical Detection, Analytical Sciences , 2010. 26. p. 557–560
  • Liu, K., et al., Online electrochemical monitoring of dynamic change of hippocampal ascorbate: Toward a platform for in vivo evaluation of antioxidant neuroprotective efficiency against cerebral ischemia injury, Analytical Chemistry, 2013. 85. p. 9947–9954.
  • Sun, C. L., et al., Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid, ACS Nano, 2011, 5. p. 7788–7795.
  • Koblová, P., et al., Development and validation of a rapid HPLC method for the determination of ascorbic acid, phenylephrine, paracetamol and caffeine using a monolithic column, Analytical Methods, 2012. 4. p. 1588–1591.
  • Wang, Z., Teng, X. and Lu, C., Carbonate interlayered hydrotalcites-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of ascorbic acid, Analyst, 2012. 137. p. 1876–1881.
  • Peng, J., et al,. Ding, A rapid, sensitive and selective colorimetric method for detection of ascorbic acid, Sensors and Actuators B:Chemical, 2015. 221. p. 708–716.
  • Chen, J., et al., Reduced graphene oxide nanosheets functionalized with poly(styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid, Microchimica Acta ,2016. 183. p. 1847–1853.
  • Wang, X., Watanabe, H. and Uchiyama, S., Amperometric l-ascorbic acid biosensors equipped with enzyme micelle membrane, Talanta, 2008. 74. p. 1681–1685.
  • Chauhan, N., Dahiya, T. and Priyanka-Pundir, C. S., Fabrication of an amperometric ascorbate biosensor using egg shell membrane bound Lagenaria siceraria fruit ascorbate oxidase, Journal of Molecular Catalysis B:Enzymatic ,2010. 67. p. 66–71.
  • Liu, M., et al., A stable sandwich-type amperometric biosensor based on poly(3,4- ethylenedioxythiophene)-single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid, Sensors and Actuators B:Chemical , 2011. 159. p. 277–285.
  • Dodevska, T., Horozova, E. and Dimcheva, N., Electrochemical behavior of ascorbate oxidase immobilized on graphite electrode modified with Au-nanoparticles, Materials Sciences nd Engineering B:Solid-State Materiasl for Advanced Technology , 2013. 178. p. 1497–1502.
  • Liu M., et al., An Amperometric Biosensor Based on Ascorbate Oxidase Immobilized in Poly(3,4-ethylenedioxythiophene)/Multi-Walled Carbon Nanotubes Composite Films for the Determination of L-Ascorbic Acid, Analytical Sciences, 2011. 27 . p. 477.
  • Csiffáry, G., et al., Ascorbate oxidase-based amperometric biosensor for L-ascorbic acid determination in beverages, Food Technology Biotechnology, 2016. 54. p. 31–35.
  • Kannoujia, D. K., Kumar, S. and Nahar, P., Covalent immobilization of ascorbate oxidase onto polycarbonate strip for l-ascorbic acid detection, Journal of Bioscience Bioengineering, 2012. 114. p. 402–404.
  • Akyilmaz, E., Guvenc, C. and Koylu, H., A novel mıcrobıal bıosensor system based on C. tropicalis yeast cells for selectıve determınatıon of L-Ascorbıc acid, Bioelectrochemistry, 2020. 132.
  • Gao, W., Song, J. and Wu, N., Voltammetric behavior and square-wave voltammetric determination of trepibutone at a pencil graphite electrode, Journal Electroanalytical Chemistry, 2005. 576. p. 1–7.
  • Erdem, A., Congur, G. and Mese, F., Electrochemical Detection of Activated Protein C Using an Aptasensor Based on PAMAM Dendrimer Modified Pencil Graphite Electrodes, Electroanalysis, 2014. 26. p. 2580–2590.
  • Kawde, A. N., et al., A facile fabrication of platinum nanoparticle-modified graphite pencil electrode for highly sensitive detection of hydrogen peroxide, Journal Electroanalytical Chemistry, 2015. 740. p. 68–74.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Burhan Budak 0000-0002-3715-5861

Erhan Dinckaya 0000-0003-0561-0919

Project Number 2014 FEN 016
Publication Date December 15, 2022
Published in Issue Year 2022

Cite

EndNote Budak B, Dinckaya E (December 1, 2022) L-Askorbik asit (C vitamini) Tayinine Yönelik Kalem Grafit Elektrot-Askorbat Oksidaz Temelli Yeni Bir Biyosensör Geliştirilmesi. International Journal of Life Sciences and Biotechnology 5 3 611–626.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366