Review
BibTex RIS Cite

An Overview of Applications of Nanoparticles in Plant Systems and Plant Tissue Cultures

Year 2023, , 335 - 370, 20.12.2023
https://doi.org/10.38001/ijlsb.1293031

Abstract

With the rapid increase in the world population, the need for plants and plant materials has also increased. Plant biotechnology is a good alternative to meet these needs. Plant tissue cultures, which constitute the most important part of plant biotechnology, include many techniques for different purposes. These techniques; micropropagation, genetic manipulation, bioactive compound production, and plant growth, etc. it is accepted as one of the basic building blocks of plant biology in fields. Nanotechnology is a multidisciplinary science that deals with the production, design, and application of nano-sized new materials (nanomaterials), and its basis is nanoparticles. Applications of nanoparticles in plant systems and plant tissue cultures have various effects on plant growth and development physiology. The most studied nanoparticles in these areas are; metal/metal oxide-based, carbon-based, quantum dots, silicon, and polymeric nanoparticles. When the studies using nanoparticles in plant systems are examined; It has been reported that positive results were obtained in parameters such as seed germination, plant growth and yield, shoot regeneration, root/shoot length, and biomass increase, and inducing effects were determined by physiological/biochemical activities. Also, effects such as providing genetic modification, improving the production of bioactive compounds, providing plant protection as well as increasing resistance to biotic and abiotic stress have been determined. In recent years, successful results have been obtained for the elimination of contaminants from explants, callus induction, shoot regeneration, organogenesis, somatic embryogenesis, somaclonal variation, in vitro flowering, genetic transformation, and secondary metabolite production with the applications of nanoparticles in plant tissue cultures. It has been revealed that the success of the application of nanoparticles in plant systems and plant tissue cultures depends on the type of nanoparticle used, its dose, and the plant species studied. This review aims to reveal the positive aspects of the use of nanotechnology by examining the existing studies on the integration of nanotechnology into plant systems and plant tissue cultures.

References

  • Álvarez, S. P., et al., Nanotechnology and plant tissue culture. Plant Nanobionics: Volume 1, Advances in the Understanding of Nanomaterials Research and Applications, 2019. p.333-370.
  • Kim, D. H., J. Gopal, I. Sivanesan, Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Advances, 2017. 7(58): p. 36492-36505.
  • Jain, D., et al., Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest Journal of Nanomaterials and Biostructures, 2009. 4(3): p. 557-563.
  • Khan, T., et al., Production of biomass and useful compounds through elicitation in adventitious root cultures of Fagonia indica. Industrial Crops and Products, 2017. 108: p. 451-457.
  • Çiftçi, Y. Ö. and Altınkut-Uncuoğlu A., Bitki Biyoteknolojisinde Güncel Yaklaşımlar, 2019, Ankara: Palme Press-In Turkey
  • Cansız, E. İ. and S. Kirmusaoğlu, Nanoteknolojide nano gümüşün antibakteriyel özelliği. Haliç Üniversitesi Fen Bilimleri Dergisi, 2018. 1: p. 119-130.
  • Seleiman, M. F., et al., Nano-Fertilization as an emerging fertilization technique: why can modern agriculture benefit from its use?. Plants, 2020. p. 10, 2.
  • Sanzari, I., A. Leone and A., Ambrosone, Nanotechnology in plant science: to make a long story short. Frontiers in Bioengineering and Biotechnology, 2019. p: 7, 120.
  • Verma, S. K., et al., Engineered nanomaterials for plant growth and development: a perspective analysis. Science of the Total Environment, 2018. 630: p. 1413-1435.
  • Omar, R. A., et al., Impact of nanomaterials in plant systems. Plant Nanobionics: Advances in the Understanding of Nanomaterials Research and Applications, 2019. 1: p. 117-140.
  • Wang, P., et al., Nanotechnology: a new opportunity in plant sciences. Trends in Plant Science, 2016. 21(8): p. 699-712.
  • Ruttkay-Nedecky, B., et al., Nanoparticles based on essential metals and their phytotoxicity. Journal of Nanobiotechnology, 2017. 15(1): p. 1-19.
  • Ocsoy, I., et al., Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano, 2013. 7(10): p. 8972-8980.
  • Djanaguiraman, M., et al., Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS omega, 2018. 3(10): p. 14406-14416.
  • Gao, H., et al., Enhanced plant growth promoting role of mPEG‐PLGA‐based nanoparticles as an activator protein PeaT1 carrier in wheat (Triticum aestivum L.). Journal of Chemical Technology & Biotechnology, 2018. 93(11): p. 3143-3151.
  • Qados, A. M. A., Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Journal of Experimental Agriculture International, 2015. 7(2): p. 78.
  • Prasad, R., et al., Nanomaterials act as plant defense mechanism. Nanotechnology: Food and Environmental Paradigm, 2017c. p. 253-269.
  • Khalid, M. F., et al., Lemon tetraploid rootstock transmits the salt tolerance when grafted with diploid kinnow mandarin by strong antioxidant defense mechanism and efficient osmotic adjustment. Journal of Plant Growth Regulation, 2022. 41: p. 1125–1137.
  • Özcan, O., et al., Oksidatif stres ve hücre içi lipit, protein ve DNA yapıları üzerine etkileri. Journal of Clinical and Experimental Investigations, 2015. 6(3): p. 331-336.
  • O’Brien, J. A., et al., Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta, 2012, 236: p. 765-779.
  • Amiri, R.M., et al., Expression of acyl-lipid Δ12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato. Journal of Integrative Plant Biology. 2010, 52(3): p. 289–297.
  • Sarraf, M., et al., Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: An overview of the mechanisms. Plants, 2022. 11(3): p. 316.
  • Ali, S., A. Mehmood and N. Khan, Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021. 2: p. 1-17.
  • Wang, S., et al., Phytotoxicity and accumulation of copper-based nanoparticles in brassica under cadmium stress. Nanomaterials, 2022. 12: p. 1497.
  • Kareem, H.A., et al., Zinc Oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata L.). Frontiers in Plant Science, 2022. 13: p. 842349.
  • Thakur, S., et al., Zinc oxide and titanium dioxide nanoparticles influence heat stress tolerance mediated by antioxidant defense system in wheat. Cereal Research Communications, 2021. 50: p. 385–396.
  • Zulfiqar, F., Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology Biochemical, 2021. 160: p. 257–268.
  • Wahid, I., et al., Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems. Biomolecules, 2021. 10: p. 1506.
  • Tahjib-Ul-Arif, M., et al., Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture. Agriculture, 2019. 9: p. 223.
  • Farhangi-Abriz, S. and S. Torabian, Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity, Protoplasma, 2018. 255: p. 953-962.
  • You, J. and Z. Chan, ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 2015.6: p. 1092.
  • González-García, Y., et al., Effect of three nanoparticles (Se, Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress. Plants, 2021, 10: p. 217. Mushtaq, A., et al., Effect of silicon on antioxidant enzymes of wheat (Triticum aestivum L.) grown under salt stress. Silicon, 2020. 12: p. 2783–2788.
  • Soni, S.,et al., Application of nanoparticles for enhanced UV-B stress tolerance in plants. Plant Nano Biology, 2020. p. 100014.
  • Komatsu, S., et al., A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. Journal of Proteome Research, 2009. 8(10): p. 4766–4778.
  • Sheikh Mohamed, M. And D. Sakthi Kumar, Effect of nanoparticles on plants with regard to physiological attributes. In Plant Nanotechnology, 2016. p. 119-153.
  • Khan, I., K. Saeed and I. Khan, Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2019. 12(7): p. 908-931.
  • Rico, Cyren M., J. R. Peralta-Videa and J. L. Gardea-Torresdey, Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. Nanotechnology and plant sciences: nanoparticles and their impact on plants, 2015. p. 1-17.
  • 39. Tripathi, D. K., et al., Silicon nanoparticles alleviate chromium phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology Biochemical, 2015. 96: p. 189–198.
  • 40. Zhu, H., et al., Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 2008. 10(6): p. 713-717.
  • 41. Abdulrazaq, M. S., Applıcatıon of nanopartıcles and oregano (Origanum vulgare) essentıal oıl against gray mold dıseaseagent (Botrytis cinerea) on tomato. Yüksek Lisans Tezi, Natural and Applıed Sciences Department of Agricultural sciences and Technologies, 2018. Erciyes Üniversitesi.
  • 42. Mahna, N., S. Z. Vahed and S. Khani, Plant in vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants. Journal of Nanomedicine and Nanotechnology, 2013. 4(161): p. 1.
  • 43. Shokri, S., et a., The effects of different concentrations of Nano-Silver on elimination of Bacterial contaminations and phenolic exudation of Rose (Rosa hybrida L.) in vitro culture. International Symposium on In Vitro Culture and Horticultural Breeding, 2013. 1083: p. 391-396.
  • 44. Kumari, R., J. S. Singh and D. P. Singh, Biogenic synthesis and spatial distribution of silver nanoparticles in the legume mungbean plant (Vigna radiata L.). Plant Physiology and Biochemistry, 2017. 110: p. 158-166.
  • 45. Poborilova, Z., R. Opatrilova and P. Babula, Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environmental and Experimental Botany, 2013. 91: p. 1-11.
  • 46. Iannone, M. F., et al., Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environmental and Experimental Botany, 2016, 131: p. 77-88.
  • 47. Okupnik, A. and S. Pflugmacher, Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO2 nanoparticles. Environmental Toxicology and Chemistry, 2016. 35(11): p. 2859-2866.
  • 48. Tabay, D., Bakır oksit ve çinko oksit nanopartiküllerin mısır (Zea mays L.) bitkisinde büyüme, gelişme ve bazı genlerin ekspresyonu üzerine etkilerinin araştırılması. Doktora tezi, 2021. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Ana Bilim Dalı.
  • 49. Aktay, A., Bitki doku kültürü uygulamalarındaki sterilizasyon prosedürlerinde nanopartiküllerin kullanımı, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı, 2019. Kütahya Dumlupınar Üniversitesi.
  • 50. Lubick N., Nanosilver toxicity: ions, nanoparticles or both?, Environ Science Technology, 2008. 42(23): p.8617-8617.
  • 51. Rostami, A. A. and A. Shahsavar, Nano-silver particles eliminate the in vitro contaminations of olive mission expiants. Asian Journal of Plant Sciences, 2009. 8: p. 1-5
  • 52. Aghdaei, M., M. K. Sarmast, and H. Salehi, Effects of silver nanoparticles on Tecomella undulata Seem. Micropropagation. Adv. Hortical Science, 2012. p. 21-24.
  • 53. Spinoso-Castillo, J. L., et al., Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. Ex. Andrews) using a temporary immersion system. Plant Cell, Tissue and Organ Culture, 2017. 129(2): p. 195-207.
  • 54. Abdi, G., H. Salehi, and M. Khosh-Khui, Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiologiae Plantarum, 2008. 30(5): p. 709-714.
  • 55. Helaly, M. N., et al., Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Australian Journal of Crop Science, 2014. 8(4): p. 612-624.
  • 56. Bao, H. G., et al., Copper nanoparticles enhanced surface disinfection, induction and maturation of somatic embryos in tuberous begonias (Begonia× tuberhybrida Voss) cultured in vitro. Plant Cell, Tissue and Organ Culture, 2022. p. 1-15.
  • 57. Ewais, E. A., S. A. Desouky and E. H. Elshazly, Evaluation of callus responses of Solanum nigrum L. exposed to biologically synthesized silver nanoparticles. Nanoscience Nanotechnology, 2015. 5(3): p. 45-56.
  • 58. Fazal, H., et al., Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L.. Applied Biochemistry and Biotechnology, 2016. 180(6): p. 1076-1092.
  • 59. Kokina, I., et al., Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. Journal of biotechnology, 2013, 165(2): p. 127-132.
  • 60. Javed, R., et al., Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiology and Biochemistry, 2017. 110: p. 94-99.
  • 61. Alharby, H.F., et al., Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Archives of Biological Sciences, 2016. 68: p. 723–735.
  • 62. Genady, E. A., E. A. Qaid and A. H. Fahmy, Copper sulfate nanoparticales in vitro applications on Verbena bipinnatifida Nutt. stimulating growth and total phenolic content increasments. ınternatıonal journal of pharmaceutıcal research and allıed scıences, 2016. 5: p. 196-202.
  • 63. Talankova-Sereda, T. E., et al., The Influence of Cu-Co Nanoparticles on growth characteristics and biochemical structure of mentha longifolia in vitro. In Nanophysics, Nanophotonics, Surface Studies, and Applications, 2016. p. 427-43.
  • 64. Phong, T. H., et al., Silver nanoparticles: a positive factor for in vitro flowering and fruiting of purple passion fruit (Passiflora edulis Sim f. edulis). Plant Cell, Tissue and Organ Culture, 2022. 151(2): p. 401-412.
  • 65. Arslan, E., Gümüş nanopartiküllerin Salvia sclarea’da sürgün rejenerasyonu ve sekonder metabolit içeriklerine etkisi, Yüksek Lisans Tezi, Moleküler Biyoloji ve Genetik Anabilim Dalı, Moleküler Biyoloji ve Genetik Programı, 2022. Yıldız Teknik Üniversitesi.
  • 66. Sarmast, M. K., et al., Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell, Tissue and Organ Culture, 2015. 121(1): p. 227-236.
  • 67. Zafar, H., et al., Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Frontiers in Plant Science, 2016. 7: p. 535.
  • 68. Anwaar, S., et al., The effect of green synthesized CuO nanoparticles on callogenesis and regeneration of Oryza sativa L.. Frontiers in Plant Science, 2016. p.13-30.
  • 69. Giorgetti, L., et al., Nanoparticles effects on growth and differentiation in cell culture of carrot (Daucus carota L.). Agrochimica, 2011. 55(1): p. 45-53.
  • 70. Mandeh, M., M. Omidi and M. Rahaie, In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Element Research, 2012. 150(1): p. 376-380.
  • 71. Prabha, D. and Y. K. Negi, Seed treatment with salicylic acid enhance drought tolerance in capsicum. World Journal of Agricultural Research, 2014. 2(2): p. 42-46.
  • 72. Domokos-Szabolcsy, E., et al., Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regulation, 2012. 68(3): p. 525-531.
  • 73. Khan, T., et al., Production of biomass and useful compounds through elicitation in adventitious root cultures of Fagonia indica. Industrial Crops and Products, 2017. 108: p. 451-457.
  • 74. Ramezannezhad, R., M. Aghdasi and M. Fatemi, Enhanced production of cichoric acid in cell suspension culture of Echinacea purpurea by silver nanoparticle elicitation. Plant Cell, Tissue and Organ Culture, 2019. 139: p. 261-273.
  • 75. Jasim, B., et al., Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 2017. 25(3): p. 443-447.
  • 76. Hussain, A., et al., Biosynthesized silver nanoparticle (AgNP) from Pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Frontiers in microbiology, 2019. p. 10.
  • 77. Al-Oubaidi, H. K. M. And A. S. Mohammed-Ameen, The effect of AgNO3 NPs on increasing of secondary metabolites of Calendula officinalis L. in vitro. International Journal of Pharmacy Practice, 2014. 5: p. 267-272.
  • 78. Syu, Y. Y., et al., Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 2014. 83: p. 57-64.
  • 79. Ghorbanpour, M. and J. Hadian, Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon, 2015. 94: p. 749-759.
  • 80. Raei, M., et al., Effect of abiotic elicitors on tissue culture of Aloe vera. International Journal of Biosciences, 2014. 5(1): p. 74-81.
  • 81. Moharrami, F., et al., Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of Hyoscyamus reticulatus L. elicited by iron oxide nanoparticles, In Vitro Cellular & Developmental Biology-Plant, 2017. 53(2): p. 104-111.
  • 82. Bhat, P. and A. Bhat, Silver nanoparticles for enhancement of accumulation of capsaicin in suspension culture of Capsicum sp., Journal of Experimental Sciences, 2016. 7: p. 1-6.
  • 83. Kaveh, R., et al., Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science & Technology, 2013. 47(18): p. 10637-10644.
  • 84. Dresselhaus, M. S., G. Dresselhaus and P. C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications. Elsive, 1996.
  • 85. Sabahat, S., et al., Electrochemical fabrication of self assembled monolayer using ferrocene-functionalized gold nanoparticles on glassy carbon electrode. Electrochimica Acta, 2011. 56(20): p. 7092-7096.
  • 86. Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363(6430): p. 603-605.
  • 87. Dresselhaus, M. S. and A. Phaedon, Introduction to carbon materials research. Carbon nanotubes,2001. p.1-9.
  • 88. Mintmire, J. W., B. I. Dunlap and C. T. White, Are fullerene tubules metallic?. Physical Review Letters, 1992. 68(5): p. 631.
  • 89. Saito, R., et al., Electronic structure of chiral graphene tubules. Applied Physics Letters, 1992. 60(18): p. 2204-2206.
  • 90. Zeeshan, A., et al., Electromagnetic flow of SWCNT/MWCNT suspensions in two immiscible water-and engine-oil-based Newtonian fluids through porous media. Symmetry, 2022. 14(2): p. 406.
  • 91. Mukherjee, A., et al., Carbon nanomaterials in agriculture: A critical review. Plant Science, 2016a. 7: p. 172
  • 92. Akin-Idowu, P. E., D. O. Ibitoye, and J., Ademoyegun, Tissue culture as a plant production technique for horticultural crops. African. Journel Biotechnology, 2009. 8: p. 3782–3788.
  • 93. Ghosh, M., et al., MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2015. 774: p. 49-58.
  • 94. Katti, D. R., et al., Carbon nanotube proximity influences rice DNA, Chemical Physics, 2015. 455: p. 17-22.
  • 95. Begum, P., R. Ikhtiari and B. Fugetsu, Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 2011. 49(12): p. 3907–3919.
  • 96. Tiwari, D. K., et al., Interfacing carbon nanotubes with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience, 2014. 4(5): p. 577-591.
  • 97. Tan, X. M., C. Lin and B. Fugetsu, B., Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon, 2009. 47(15): p. 3479-3487.
  • 98. Lahiani, M. H., et al., Impact of carbon nanotube exposure to seeds of valuable crops. ACS Applied Materials & İnterfaces, 2013. 5(16): p. 7965-7973.
  • 99. Khodakovskaya, M. V., et al., Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences, 2011. 108(3): p. 1028-1033.
  • 100. Cañas, Jaclyn E., et al. "Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species." Environmental Toxicology and Chemistry: An International Journal 27.9 (2008): 1922-1931
  • 101. Flores, D., et al., A novel technique using SWCNTs to enhanced development and root growth of fig plants (Ficus carica). In Technical Proceedings of the NSTI Nanotechnology Conference and Expo, 2013. 3: p. 167-170.
  • 102. Pourkhaloee, A., et al., Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technology, 2011. 33: p.155–169.
  • 103. Vithanage, M. et al., Contrasting effects of engineered carbon nanotubes on plants: a review. Environmental geochemistry and health, 2017. 39: p. 1421-1439.
  • 104. Mohammad, A., et al., Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology, 2011. 22(29): p. 295101.
  • 105. Danish, R., F. Ahmed, and B.H. Koo, Rapid synthesis of high surface area anatase titanium oxide quantum dots.Ceramics International, 2014. 40(8): p. 12675-12680.
  • 106. Nagihan Emeksiz, Kuantum noktaları., Fen Bilimleri Enstitüsü, 2021. Mersin Üniversitesi.
  • 107. Djikanović, D., et al., Interaction of the CdSe quantum dots with plant cell walls. Colloids and Surfaces Biointerfaces, 2012. 91: p. 41-47.
  • 108. Santos, A. R., The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture, Journal of Nanobiotechnology, 2010. 8(1): p. 1-14.
  • 109. Borovaya, M. N., et al., Extracellular synthesis of luminescent CdS quantum dots using plant cell culture. Nanoscale Research Letters, 2016. 11(1): p. 1-8.
  • 110. Bairu, M. W., A. O. Aremu, J.Van Staden, Somaclonal variation in plants: causes and detection methods. Plant Growth Regulation, 2011. 63(2): p. 147-173.
  • 111. Sivanesan, I. and B.R. Jeong, Identification of somaclonal variants in proliferating shoot cultures of Senecio cruentus cv.. Plant Cell, Tissue and Organ Culture, 2012. 111(2): p. 247-253.
  • 112. Atha, D. H., et al., Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science & Technology, 2012. 46(3): p. 1819-1827 Tripathi, P. K., B. Joshi and S. Singh, Pristine and quantum dots dispersed nematic liquid crystal: Impact of dispersion and applied voltage on dielectric and electro-optical properties. Optical Materials, 2017. 69: p. 61-66.
  • Epstein, E., The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences, 1994. 91(1): p. 11-17.
  • Epstein, E., Silicon, Annual Review of Plant Biology, 1999. 50: p. 641. Ma, J. F., Y. Miyake and E. Takahashi, Silicon as a beneficial element for crop plants. Studies in Plant Science, 2001. 8: p. 17-39.
  • Currie, H. A. and C. C. Perry, Silica in plants: biological, biochemical and chemical studies, Annals of Botany, 2007. 100(7): p. 1383-1389.
  • Takahashi, N. and K. Kurata, Relationship between transpiration and silica content of the rice panicle under elevated atmospheric carbon dioxide concentration. Journal of Agricultural Meteorology, 2007. 63(2): p. 89–94.
  • Raven, J. A., The transport and function of silicon in plants. Biological Reviews, 1983. 58(2): p. 179-207. Cunha, K. P. V. And C. W. A. Nascimento, Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water, Air, and Soil Pollution, 2009. 197(1): p. 323-330.
  • Yang, Y., et al., Silica-based nanoparticles for biomedical applications: from nanocarriers to biomodulators. Accounts of Chemical Research, 2020. 53(8): p. 1545-1556.
  • Gao, X., et al., Silicon improves water use efficiency in maize plants. Journal of Plant Nutrition, 2005. 27(8): p. 1457-1470.
  • Gao, X., et al., Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 2006. 29(9): p. 1637-1647.
  • Henriet, C., et al., Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant and Soil, 2006. 287(1): p. 359-374.
  • Derman, S., et al.,. Polymeric nanoparticles. Sigma Journal of Engineering and Natural Sciences, 2013. 31(1): p. 107-120.
  • Rathiam, Y., et al., Influence of nanosilica powder on the growth of maize crop (Zea mays L.). International Journal of Green Nanotechnology, 2011. 3(3): p. 180-190.
  • Samad, A., M. I. Alam and K. Saxena, Dendrimers: a class of polymers in the nanotechnology for the delivery of active pharmaceuticals. Current Pharmaceutical Design, 2009. 15(25): p. 2958-2969.
  • Karabulut, B., O. Kerimoğlu and T. Uğurlu, Dendrimerler-ilaç taşıyıcı sistemler. Clinical and Experimental Health Sciences, 2015. 5(1): p. 31-40.
  • Serdar, S. G., et al., Tekstil Sektöründe Dendrimerlerin Kullanım Alanları ve Yeni Gelişmeler. Yekarum, 2016. 3(2).
  • Le, N. T. T., et al., Recent progress and advances of multi-stimuli-responsive dendrimers in drug delivery for cancer treatment. Pharmaceutics, 2019. 11(11): p. 591.
  • Santiago-Morales, J., et al., Fate and transformation products of amine-terminated PAMAM dendrimers under ozonation and irradiation. Journal of Hazardous Materials, 2014. 266: p. 102-113.
  • Pasupathy, K., Direct plant gene delivery with a poly (amidoamine) dendrimer. Biotechnology Journal: Healthcare Nutrition Technology, 2008. 3(8): p. 1078-1082.

Nanopartiküllerin Bitki Sistemlerinde ve Bitki Doku Kültürlerinde Uygulamalarına Yönelik Genel Bir Bakış

Year 2023, , 335 - 370, 20.12.2023
https://doi.org/10.38001/ijlsb.1293031

Abstract

Dünya nüfusunun hızla artmasıyla birlikte, bitkiye ve bitkisel materyallere duyulan ihtiyaç da artma göstermiştir. Bitki biyoteknolojisi, bu ihtiyaçların karşılanması için iyi bir alternatiftir. Bitki biyoteknolojisinin en önemli kısmını oluşturan bitki doku kültürleri, farklı amaçlara yönelik birçok tekniği içermektedir. Bitki doku kültürü teknikleri; mikroçoğaltım, genetik manipülasyon, biyoaktif bileşik üretimi ve bitki gelişimi vb. alanlarda bitki biyolojisinin temel yapıtaşlarından biri olarak kabul edilmektedir. Nanoteknoloji, nano boyutlu yeni malzemelerin (nanomalzeme) üretimi, bunların tasarımını ve uygulamasını ele alan multidisipliner bir bilim dalıdır ve temelini nanopartiküller oluşturmaktadır. Nanopartiküllerin, bitki sistemlerinde ve bitki doku kültürlerindeki uygulamalarının bitki büyüme ve gelişme fizyolojisi üzerinde çeşitli etkileri mevcuttur. Bu alanlarda en çok çalışılan nanopartiküller; sırasıyla metal/metal oksit bazlılar, karbon bazlılar, kuantum noktaları, silikon ve polimerik nanopartiküllerdir. Bitki sistemlerinde nanopartiküllerin kullanıldığı çalışmalar incelendiğinde; tohum çimlenmesi, bitki büyümesi ve verim, sürgün rejenerasyonu, kök/sürgün uzunluğu ve biyokütle artışı gibi parametrelerde olumlu sonuçlar alındığı, fizyolojik/biyokimyasal aktiviteler açısından da indükleyici etkilerin belirlendiği raporlanmıştır. Ayrıca genetik modifikasyonun sağlanması, biyoaktif bileşiklerin üretiminin iyileştirilmesi, bitki korumanın sağlanmasının yanı sıra biyotik ve abiyotik strese karşı dayanıklılığı artırma gibi etkileri de belirlenmiştir. Son yıllarda, nanopartiküllerin bitki doku kültürlerinde gerçekleştirilen uygulamaları ile de eksplantlardan kontaminantların yok edilmesi, kallus indüksiyonu, sürgün rejenerasyonu, organogenez, somatik embriyogenez, somaklonal varyasyon, in vitro çiçeklenme, genetik transformasyon ve sekonder metabolit üretimine yönelik başarılı sonuçlar alınmıştır. Nanopartiküllerin bitki sistemlerinde ve bitki doku kültürlerindeki uygulanma başarısı, kullanılan nanopartikül çeşidine, dozuna ve üzerinde çalışılan bitki türüne bağlı olduğu ortaya konulmuştur. Bu derleme, nanoteknolojinin bitki sistemlerine ve bitki doku kültürlerine entegre edilmesine yönelik mevcut çalışmaların incelenerek, nanoteknoloji kullanımının olumlu yönlerinin ortaya konulmasını amaçlamıştır.

References

  • Álvarez, S. P., et al., Nanotechnology and plant tissue culture. Plant Nanobionics: Volume 1, Advances in the Understanding of Nanomaterials Research and Applications, 2019. p.333-370.
  • Kim, D. H., J. Gopal, I. Sivanesan, Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Advances, 2017. 7(58): p. 36492-36505.
  • Jain, D., et al., Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest Journal of Nanomaterials and Biostructures, 2009. 4(3): p. 557-563.
  • Khan, T., et al., Production of biomass and useful compounds through elicitation in adventitious root cultures of Fagonia indica. Industrial Crops and Products, 2017. 108: p. 451-457.
  • Çiftçi, Y. Ö. and Altınkut-Uncuoğlu A., Bitki Biyoteknolojisinde Güncel Yaklaşımlar, 2019, Ankara: Palme Press-In Turkey
  • Cansız, E. İ. and S. Kirmusaoğlu, Nanoteknolojide nano gümüşün antibakteriyel özelliği. Haliç Üniversitesi Fen Bilimleri Dergisi, 2018. 1: p. 119-130.
  • Seleiman, M. F., et al., Nano-Fertilization as an emerging fertilization technique: why can modern agriculture benefit from its use?. Plants, 2020. p. 10, 2.
  • Sanzari, I., A. Leone and A., Ambrosone, Nanotechnology in plant science: to make a long story short. Frontiers in Bioengineering and Biotechnology, 2019. p: 7, 120.
  • Verma, S. K., et al., Engineered nanomaterials for plant growth and development: a perspective analysis. Science of the Total Environment, 2018. 630: p. 1413-1435.
  • Omar, R. A., et al., Impact of nanomaterials in plant systems. Plant Nanobionics: Advances in the Understanding of Nanomaterials Research and Applications, 2019. 1: p. 117-140.
  • Wang, P., et al., Nanotechnology: a new opportunity in plant sciences. Trends in Plant Science, 2016. 21(8): p. 699-712.
  • Ruttkay-Nedecky, B., et al., Nanoparticles based on essential metals and their phytotoxicity. Journal of Nanobiotechnology, 2017. 15(1): p. 1-19.
  • Ocsoy, I., et al., Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano, 2013. 7(10): p. 8972-8980.
  • Djanaguiraman, M., et al., Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS omega, 2018. 3(10): p. 14406-14416.
  • Gao, H., et al., Enhanced plant growth promoting role of mPEG‐PLGA‐based nanoparticles as an activator protein PeaT1 carrier in wheat (Triticum aestivum L.). Journal of Chemical Technology & Biotechnology, 2018. 93(11): p. 3143-3151.
  • Qados, A. M. A., Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Journal of Experimental Agriculture International, 2015. 7(2): p. 78.
  • Prasad, R., et al., Nanomaterials act as plant defense mechanism. Nanotechnology: Food and Environmental Paradigm, 2017c. p. 253-269.
  • Khalid, M. F., et al., Lemon tetraploid rootstock transmits the salt tolerance when grafted with diploid kinnow mandarin by strong antioxidant defense mechanism and efficient osmotic adjustment. Journal of Plant Growth Regulation, 2022. 41: p. 1125–1137.
  • Özcan, O., et al., Oksidatif stres ve hücre içi lipit, protein ve DNA yapıları üzerine etkileri. Journal of Clinical and Experimental Investigations, 2015. 6(3): p. 331-336.
  • O’Brien, J. A., et al., Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta, 2012, 236: p. 765-779.
  • Amiri, R.M., et al., Expression of acyl-lipid Δ12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato. Journal of Integrative Plant Biology. 2010, 52(3): p. 289–297.
  • Sarraf, M., et al., Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: An overview of the mechanisms. Plants, 2022. 11(3): p. 316.
  • Ali, S., A. Mehmood and N. Khan, Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021. 2: p. 1-17.
  • Wang, S., et al., Phytotoxicity and accumulation of copper-based nanoparticles in brassica under cadmium stress. Nanomaterials, 2022. 12: p. 1497.
  • Kareem, H.A., et al., Zinc Oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata L.). Frontiers in Plant Science, 2022. 13: p. 842349.
  • Thakur, S., et al., Zinc oxide and titanium dioxide nanoparticles influence heat stress tolerance mediated by antioxidant defense system in wheat. Cereal Research Communications, 2021. 50: p. 385–396.
  • Zulfiqar, F., Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology Biochemical, 2021. 160: p. 257–268.
  • Wahid, I., et al., Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems. Biomolecules, 2021. 10: p. 1506.
  • Tahjib-Ul-Arif, M., et al., Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture. Agriculture, 2019. 9: p. 223.
  • Farhangi-Abriz, S. and S. Torabian, Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity, Protoplasma, 2018. 255: p. 953-962.
  • You, J. and Z. Chan, ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 2015.6: p. 1092.
  • González-García, Y., et al., Effect of three nanoparticles (Se, Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress. Plants, 2021, 10: p. 217. Mushtaq, A., et al., Effect of silicon on antioxidant enzymes of wheat (Triticum aestivum L.) grown under salt stress. Silicon, 2020. 12: p. 2783–2788.
  • Soni, S.,et al., Application of nanoparticles for enhanced UV-B stress tolerance in plants. Plant Nano Biology, 2020. p. 100014.
  • Komatsu, S., et al., A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. Journal of Proteome Research, 2009. 8(10): p. 4766–4778.
  • Sheikh Mohamed, M. And D. Sakthi Kumar, Effect of nanoparticles on plants with regard to physiological attributes. In Plant Nanotechnology, 2016. p. 119-153.
  • Khan, I., K. Saeed and I. Khan, Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2019. 12(7): p. 908-931.
  • Rico, Cyren M., J. R. Peralta-Videa and J. L. Gardea-Torresdey, Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. Nanotechnology and plant sciences: nanoparticles and their impact on plants, 2015. p. 1-17.
  • 39. Tripathi, D. K., et al., Silicon nanoparticles alleviate chromium phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology Biochemical, 2015. 96: p. 189–198.
  • 40. Zhu, H., et al., Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 2008. 10(6): p. 713-717.
  • 41. Abdulrazaq, M. S., Applıcatıon of nanopartıcles and oregano (Origanum vulgare) essentıal oıl against gray mold dıseaseagent (Botrytis cinerea) on tomato. Yüksek Lisans Tezi, Natural and Applıed Sciences Department of Agricultural sciences and Technologies, 2018. Erciyes Üniversitesi.
  • 42. Mahna, N., S. Z. Vahed and S. Khani, Plant in vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants. Journal of Nanomedicine and Nanotechnology, 2013. 4(161): p. 1.
  • 43. Shokri, S., et a., The effects of different concentrations of Nano-Silver on elimination of Bacterial contaminations and phenolic exudation of Rose (Rosa hybrida L.) in vitro culture. International Symposium on In Vitro Culture and Horticultural Breeding, 2013. 1083: p. 391-396.
  • 44. Kumari, R., J. S. Singh and D. P. Singh, Biogenic synthesis and spatial distribution of silver nanoparticles in the legume mungbean plant (Vigna radiata L.). Plant Physiology and Biochemistry, 2017. 110: p. 158-166.
  • 45. Poborilova, Z., R. Opatrilova and P. Babula, Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environmental and Experimental Botany, 2013. 91: p. 1-11.
  • 46. Iannone, M. F., et al., Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environmental and Experimental Botany, 2016, 131: p. 77-88.
  • 47. Okupnik, A. and S. Pflugmacher, Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO2 nanoparticles. Environmental Toxicology and Chemistry, 2016. 35(11): p. 2859-2866.
  • 48. Tabay, D., Bakır oksit ve çinko oksit nanopartiküllerin mısır (Zea mays L.) bitkisinde büyüme, gelişme ve bazı genlerin ekspresyonu üzerine etkilerinin araştırılması. Doktora tezi, 2021. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Ana Bilim Dalı.
  • 49. Aktay, A., Bitki doku kültürü uygulamalarındaki sterilizasyon prosedürlerinde nanopartiküllerin kullanımı, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı, 2019. Kütahya Dumlupınar Üniversitesi.
  • 50. Lubick N., Nanosilver toxicity: ions, nanoparticles or both?, Environ Science Technology, 2008. 42(23): p.8617-8617.
  • 51. Rostami, A. A. and A. Shahsavar, Nano-silver particles eliminate the in vitro contaminations of olive mission expiants. Asian Journal of Plant Sciences, 2009. 8: p. 1-5
  • 52. Aghdaei, M., M. K. Sarmast, and H. Salehi, Effects of silver nanoparticles on Tecomella undulata Seem. Micropropagation. Adv. Hortical Science, 2012. p. 21-24.
  • 53. Spinoso-Castillo, J. L., et al., Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. Ex. Andrews) using a temporary immersion system. Plant Cell, Tissue and Organ Culture, 2017. 129(2): p. 195-207.
  • 54. Abdi, G., H. Salehi, and M. Khosh-Khui, Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiologiae Plantarum, 2008. 30(5): p. 709-714.
  • 55. Helaly, M. N., et al., Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Australian Journal of Crop Science, 2014. 8(4): p. 612-624.
  • 56. Bao, H. G., et al., Copper nanoparticles enhanced surface disinfection, induction and maturation of somatic embryos in tuberous begonias (Begonia× tuberhybrida Voss) cultured in vitro. Plant Cell, Tissue and Organ Culture, 2022. p. 1-15.
  • 57. Ewais, E. A., S. A. Desouky and E. H. Elshazly, Evaluation of callus responses of Solanum nigrum L. exposed to biologically synthesized silver nanoparticles. Nanoscience Nanotechnology, 2015. 5(3): p. 45-56.
  • 58. Fazal, H., et al., Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L.. Applied Biochemistry and Biotechnology, 2016. 180(6): p. 1076-1092.
  • 59. Kokina, I., et al., Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. Journal of biotechnology, 2013, 165(2): p. 127-132.
  • 60. Javed, R., et al., Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiology and Biochemistry, 2017. 110: p. 94-99.
  • 61. Alharby, H.F., et al., Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Archives of Biological Sciences, 2016. 68: p. 723–735.
  • 62. Genady, E. A., E. A. Qaid and A. H. Fahmy, Copper sulfate nanoparticales in vitro applications on Verbena bipinnatifida Nutt. stimulating growth and total phenolic content increasments. ınternatıonal journal of pharmaceutıcal research and allıed scıences, 2016. 5: p. 196-202.
  • 63. Talankova-Sereda, T. E., et al., The Influence of Cu-Co Nanoparticles on growth characteristics and biochemical structure of mentha longifolia in vitro. In Nanophysics, Nanophotonics, Surface Studies, and Applications, 2016. p. 427-43.
  • 64. Phong, T. H., et al., Silver nanoparticles: a positive factor for in vitro flowering and fruiting of purple passion fruit (Passiflora edulis Sim f. edulis). Plant Cell, Tissue and Organ Culture, 2022. 151(2): p. 401-412.
  • 65. Arslan, E., Gümüş nanopartiküllerin Salvia sclarea’da sürgün rejenerasyonu ve sekonder metabolit içeriklerine etkisi, Yüksek Lisans Tezi, Moleküler Biyoloji ve Genetik Anabilim Dalı, Moleküler Biyoloji ve Genetik Programı, 2022. Yıldız Teknik Üniversitesi.
  • 66. Sarmast, M. K., et al., Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell, Tissue and Organ Culture, 2015. 121(1): p. 227-236.
  • 67. Zafar, H., et al., Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Frontiers in Plant Science, 2016. 7: p. 535.
  • 68. Anwaar, S., et al., The effect of green synthesized CuO nanoparticles on callogenesis and regeneration of Oryza sativa L.. Frontiers in Plant Science, 2016. p.13-30.
  • 69. Giorgetti, L., et al., Nanoparticles effects on growth and differentiation in cell culture of carrot (Daucus carota L.). Agrochimica, 2011. 55(1): p. 45-53.
  • 70. Mandeh, M., M. Omidi and M. Rahaie, In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Element Research, 2012. 150(1): p. 376-380.
  • 71. Prabha, D. and Y. K. Negi, Seed treatment with salicylic acid enhance drought tolerance in capsicum. World Journal of Agricultural Research, 2014. 2(2): p. 42-46.
  • 72. Domokos-Szabolcsy, E., et al., Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regulation, 2012. 68(3): p. 525-531.
  • 73. Khan, T., et al., Production of biomass and useful compounds through elicitation in adventitious root cultures of Fagonia indica. Industrial Crops and Products, 2017. 108: p. 451-457.
  • 74. Ramezannezhad, R., M. Aghdasi and M. Fatemi, Enhanced production of cichoric acid in cell suspension culture of Echinacea purpurea by silver nanoparticle elicitation. Plant Cell, Tissue and Organ Culture, 2019. 139: p. 261-273.
  • 75. Jasim, B., et al., Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 2017. 25(3): p. 443-447.
  • 76. Hussain, A., et al., Biosynthesized silver nanoparticle (AgNP) from Pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Frontiers in microbiology, 2019. p. 10.
  • 77. Al-Oubaidi, H. K. M. And A. S. Mohammed-Ameen, The effect of AgNO3 NPs on increasing of secondary metabolites of Calendula officinalis L. in vitro. International Journal of Pharmacy Practice, 2014. 5: p. 267-272.
  • 78. Syu, Y. Y., et al., Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 2014. 83: p. 57-64.
  • 79. Ghorbanpour, M. and J. Hadian, Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon, 2015. 94: p. 749-759.
  • 80. Raei, M., et al., Effect of abiotic elicitors on tissue culture of Aloe vera. International Journal of Biosciences, 2014. 5(1): p. 74-81.
  • 81. Moharrami, F., et al., Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of Hyoscyamus reticulatus L. elicited by iron oxide nanoparticles, In Vitro Cellular & Developmental Biology-Plant, 2017. 53(2): p. 104-111.
  • 82. Bhat, P. and A. Bhat, Silver nanoparticles for enhancement of accumulation of capsaicin in suspension culture of Capsicum sp., Journal of Experimental Sciences, 2016. 7: p. 1-6.
  • 83. Kaveh, R., et al., Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science & Technology, 2013. 47(18): p. 10637-10644.
  • 84. Dresselhaus, M. S., G. Dresselhaus and P. C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications. Elsive, 1996.
  • 85. Sabahat, S., et al., Electrochemical fabrication of self assembled monolayer using ferrocene-functionalized gold nanoparticles on glassy carbon electrode. Electrochimica Acta, 2011. 56(20): p. 7092-7096.
  • 86. Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363(6430): p. 603-605.
  • 87. Dresselhaus, M. S. and A. Phaedon, Introduction to carbon materials research. Carbon nanotubes,2001. p.1-9.
  • 88. Mintmire, J. W., B. I. Dunlap and C. T. White, Are fullerene tubules metallic?. Physical Review Letters, 1992. 68(5): p. 631.
  • 89. Saito, R., et al., Electronic structure of chiral graphene tubules. Applied Physics Letters, 1992. 60(18): p. 2204-2206.
  • 90. Zeeshan, A., et al., Electromagnetic flow of SWCNT/MWCNT suspensions in two immiscible water-and engine-oil-based Newtonian fluids through porous media. Symmetry, 2022. 14(2): p. 406.
  • 91. Mukherjee, A., et al., Carbon nanomaterials in agriculture: A critical review. Plant Science, 2016a. 7: p. 172
  • 92. Akin-Idowu, P. E., D. O. Ibitoye, and J., Ademoyegun, Tissue culture as a plant production technique for horticultural crops. African. Journel Biotechnology, 2009. 8: p. 3782–3788.
  • 93. Ghosh, M., et al., MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2015. 774: p. 49-58.
  • 94. Katti, D. R., et al., Carbon nanotube proximity influences rice DNA, Chemical Physics, 2015. 455: p. 17-22.
  • 95. Begum, P., R. Ikhtiari and B. Fugetsu, Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 2011. 49(12): p. 3907–3919.
  • 96. Tiwari, D. K., et al., Interfacing carbon nanotubes with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience, 2014. 4(5): p. 577-591.
  • 97. Tan, X. M., C. Lin and B. Fugetsu, B., Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon, 2009. 47(15): p. 3479-3487.
  • 98. Lahiani, M. H., et al., Impact of carbon nanotube exposure to seeds of valuable crops. ACS Applied Materials & İnterfaces, 2013. 5(16): p. 7965-7973.
  • 99. Khodakovskaya, M. V., et al., Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences, 2011. 108(3): p. 1028-1033.
  • 100. Cañas, Jaclyn E., et al. "Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species." Environmental Toxicology and Chemistry: An International Journal 27.9 (2008): 1922-1931
  • 101. Flores, D., et al., A novel technique using SWCNTs to enhanced development and root growth of fig plants (Ficus carica). In Technical Proceedings of the NSTI Nanotechnology Conference and Expo, 2013. 3: p. 167-170.
  • 102. Pourkhaloee, A., et al., Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technology, 2011. 33: p.155–169.
  • 103. Vithanage, M. et al., Contrasting effects of engineered carbon nanotubes on plants: a review. Environmental geochemistry and health, 2017. 39: p. 1421-1439.
  • 104. Mohammad, A., et al., Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology, 2011. 22(29): p. 295101.
  • 105. Danish, R., F. Ahmed, and B.H. Koo, Rapid synthesis of high surface area anatase titanium oxide quantum dots.Ceramics International, 2014. 40(8): p. 12675-12680.
  • 106. Nagihan Emeksiz, Kuantum noktaları., Fen Bilimleri Enstitüsü, 2021. Mersin Üniversitesi.
  • 107. Djikanović, D., et al., Interaction of the CdSe quantum dots with plant cell walls. Colloids and Surfaces Biointerfaces, 2012. 91: p. 41-47.
  • 108. Santos, A. R., The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture, Journal of Nanobiotechnology, 2010. 8(1): p. 1-14.
  • 109. Borovaya, M. N., et al., Extracellular synthesis of luminescent CdS quantum dots using plant cell culture. Nanoscale Research Letters, 2016. 11(1): p. 1-8.
  • 110. Bairu, M. W., A. O. Aremu, J.Van Staden, Somaclonal variation in plants: causes and detection methods. Plant Growth Regulation, 2011. 63(2): p. 147-173.
  • 111. Sivanesan, I. and B.R. Jeong, Identification of somaclonal variants in proliferating shoot cultures of Senecio cruentus cv.. Plant Cell, Tissue and Organ Culture, 2012. 111(2): p. 247-253.
  • 112. Atha, D. H., et al., Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science & Technology, 2012. 46(3): p. 1819-1827 Tripathi, P. K., B. Joshi and S. Singh, Pristine and quantum dots dispersed nematic liquid crystal: Impact of dispersion and applied voltage on dielectric and electro-optical properties. Optical Materials, 2017. 69: p. 61-66.
  • Epstein, E., The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences, 1994. 91(1): p. 11-17.
  • Epstein, E., Silicon, Annual Review of Plant Biology, 1999. 50: p. 641. Ma, J. F., Y. Miyake and E. Takahashi, Silicon as a beneficial element for crop plants. Studies in Plant Science, 2001. 8: p. 17-39.
  • Currie, H. A. and C. C. Perry, Silica in plants: biological, biochemical and chemical studies, Annals of Botany, 2007. 100(7): p. 1383-1389.
  • Takahashi, N. and K. Kurata, Relationship between transpiration and silica content of the rice panicle under elevated atmospheric carbon dioxide concentration. Journal of Agricultural Meteorology, 2007. 63(2): p. 89–94.
  • Raven, J. A., The transport and function of silicon in plants. Biological Reviews, 1983. 58(2): p. 179-207. Cunha, K. P. V. And C. W. A. Nascimento, Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water, Air, and Soil Pollution, 2009. 197(1): p. 323-330.
  • Yang, Y., et al., Silica-based nanoparticles for biomedical applications: from nanocarriers to biomodulators. Accounts of Chemical Research, 2020. 53(8): p. 1545-1556.
  • Gao, X., et al., Silicon improves water use efficiency in maize plants. Journal of Plant Nutrition, 2005. 27(8): p. 1457-1470.
  • Gao, X., et al., Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 2006. 29(9): p. 1637-1647.
  • Henriet, C., et al., Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant and Soil, 2006. 287(1): p. 359-374.
  • Derman, S., et al.,. Polymeric nanoparticles. Sigma Journal of Engineering and Natural Sciences, 2013. 31(1): p. 107-120.
  • Rathiam, Y., et al., Influence of nanosilica powder on the growth of maize crop (Zea mays L.). International Journal of Green Nanotechnology, 2011. 3(3): p. 180-190.
  • Samad, A., M. I. Alam and K. Saxena, Dendrimers: a class of polymers in the nanotechnology for the delivery of active pharmaceuticals. Current Pharmaceutical Design, 2009. 15(25): p. 2958-2969.
  • Karabulut, B., O. Kerimoğlu and T. Uğurlu, Dendrimerler-ilaç taşıyıcı sistemler. Clinical and Experimental Health Sciences, 2015. 5(1): p. 31-40.
  • Serdar, S. G., et al., Tekstil Sektöründe Dendrimerlerin Kullanım Alanları ve Yeni Gelişmeler. Yekarum, 2016. 3(2).
  • Le, N. T. T., et al., Recent progress and advances of multi-stimuli-responsive dendrimers in drug delivery for cancer treatment. Pharmaceutics, 2019. 11(11): p. 591.
  • Santiago-Morales, J., et al., Fate and transformation products of amine-terminated PAMAM dendrimers under ozonation and irradiation. Journal of Hazardous Materials, 2014. 266: p. 102-113.
  • Pasupathy, K., Direct plant gene delivery with a poly (amidoamine) dendrimer. Biotechnology Journal: Healthcare Nutrition Technology, 2008. 3(8): p. 1078-1082.
There are 128 citations in total.

Details

Primary Language Turkish
Subjects Industrial Biotechnology
Journal Section Review Articles
Authors

Buse Can 0000-0002-4365-6697

Aynur Gürel 0000-0002-7002-9752

Early Pub Date December 1, 2023
Publication Date December 20, 2023
Published in Issue Year 2023

Cite

EndNote Can B, Gürel A (December 1, 2023) Nanopartiküllerin Bitki Sistemlerinde ve Bitki Doku Kültürlerinde Uygulamalarına Yönelik Genel Bir Bakış. International Journal of Life Sciences and Biotechnology 6 3 335–370.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366