Review
BibTex RIS Cite

Biorisks Associated with Synthetic Biology: Virulence plasmid Transfer to Probiotic or Starter Cultures

Year 2024, , 120 - 132, 15.08.2024
https://doi.org/10.38001/ijlsb.1426971

Abstract

Synthetic biology has revolutionized the field of biotechnology, enabling precise manipulation of biological systems for diverse applications. While the advancements in this rapidly evolving field are promising, there is a growing concern about potential biorisks associated with synthetic biology techniques. One significant risk is the transfer of pathogenic plasmids to probiotic or starter cultures, which could lead to unintended consequences and pose serious threats to human health. This paper reviews the biorisks of pathogenic plasmid transfer, discusses potential consequences, and proposes risk mitigation strategies to ensure responsible and safe use of synthetic biology in probiotics and starter cultures.

References

  • 1. Kumar, J., Narnoliya, L. K., Alok, A., A CRISPR Technology and Biomolecule Production by Synthetic Biology Approach. In Elsevier eBooks, 2019, pp 143–161. https://doi.org/10.1016/b978-0-444-64085-7.00006-x.
  • 2. Van Reenen, C. A., Dicks, L. M. T., Horizontal Gene Transfer Amongst Probiotic Lactic Acid Bacteria and Other Intestinal Microbiota: What Are the Possibilities? A Review. Archives of Microbiology, 2010, 193 (3), 157–168. https://doi.org/10.1007/s00203-010-0668-3.
  • 3. Choi, K. R., Jang, W. D., Yang, D., Cho, J. S., Park, D., Lee, S. Y., Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology With Metabolic Engineering. Trends in Biotechnology, 2019, 37 (8), 817–837. https://doi.org/10.1016/j.tibtech.2019.01.003.
  • 4. Chae, T. U., Choi, S. Y., Kim, J. W., Ko, Y.-S., Lee, S. Y., Recent Advances in Systems Metabolic Engineering Tools and Strategies. Current Opinion in Biotechnology, 2017, 47, 67–82. https://doi.org/10.1016/j.copbio.2017.06.007.
  • 5. Oye, K. A., Esvelt, K. M., Appleton, E., Catteruccia, F., Church, G. M., Kuiken, T. A., Lightfoot, S. B.-Y., McNamara, J., Smidler, A. L., Collins, J. P., Regulating Gene Drives. Science, 2014, 345 (6197), 626–628. https://doi.org/10.1126/science.1254287.
  • 6. Committee on Science, Technology, and Law, Policy and Global Affairs, Board on Life Sciences, Division on Earth and Life Sciences, National Academy of Engineering, National Research Council., Positioning Synthetic Biology to Meet the Challenges of the 21st Century: Summary Report of a Six Academies Symposium Series. Washington (DC): National Academies Press (US), 2013. https://doi.org/10.17226/13316.
  • 7. Ou, Y., Guo, S., Safety Risks and Ethical Governance of Biomedical Applications of Synthetic Biology. Frontiers in Bioengineering and Biotechnology, 2023, 11. https://doi.org/10.3389/fbioe.2023.1292029.
  • 8. Zeng, X., Jiang, H., Yang, G., Ou, Y., Lu, S., Jiang, J., Lei, R., Su, L., Regulation and Management of the Biosecurity for Synthetic Biology. Synthetic and Systems Biotechnology, 2022, 7 (2), 784–790. https://doi.org/10.1016/j.synbio.2022.03.005.
  • 9. Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., Fakiri, E. M., Health Benefits of Probiotics: A Review. ISRN Nutrition 2013, 2013, 1–7. https://doi.org/10.5402/2013/481651.
  • 10. Mack, D. R., Probiotics-mixed Messages. PubMed, 2005, 51, 1455–4.
  • 11. García‐Díez, J., Saraiva, C., Use of Starter Cultures in Foods From Animal Origin to Improve Their Safety. International Journal of Environmental Research and Public Health, 2021, 18 (5), 2544. https://doi.org/10.3390/ijerph18052544.
  • 12. Callaway, E., Controversial CRISPR ‘Gene Drives’ Tested in Mammals for the First Time. Nature, 2018, 559 (7713), 164. https://doi.org/10.1038/d41586-018-05665-1.
  • 13. Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., Liu, D. R., Programmable Base Editing of a•T to G•C in Genomic DNA Without DNA Cleavage. Nature, 2017, 551 (7681), 464–471. https://doi.org/10.1038/nature24644.
  • 14. Nandagopal, N., Elowitz, M. B., Synthetic Biology: Integrated Gene Circuits. Science, 2011, 333 (6047), 1244–1248. https://doi.org/10.1126/science.1207084.
  • 15. Hughes, R. A., Miklos, A. E., Ellington, A. D., Gene Synthesis. In Methods in Enzymology, 2011, pp 277–309. https://doi.org/10.1016/b978-0-12-385120-8.00012-7.

Sentetik Biyoloji ile İlişkili Biyoriskler: Probiyotik veya Starter Kültürlere Virülans Plazmid Transferi

Year 2024, , 120 - 132, 15.08.2024
https://doi.org/10.38001/ijlsb.1426971

Abstract

Sentetik biyoloji, çeşitli uygulamalar için biyolojik sistemlerin hassas bir şekilde manipüle edilmesini sağlayarak biyoteknoloji alanında devrim yaratmıştır. Hızla gelişen bu alandaki ilerlemeler umut verici olsa da, sentetik biyoloji teknikleriyle ilişkili potansiyel biyoriskler hakkında artan bir endişe bulunmaktadır. Önemli risklerden biri, patojenik plazmidlerin probiyotik veya starter kültürlere aktarılmasıdır; bu da istenmeyen sonuçlara yol açabilir ve insan sağlığı için ciddi tehditler oluşturabilmektedir. Bu makale, patojenik plazmid transferinin biyorisklerini gözden geçirmekte, potansiyel sonuçları tartışmakta ve probiyotiklerde ve starter kültürlerde sentetik biyolojinin sorumlu ve güvenli bir şekilde kullanılmasını sağlamak için risk azaltma stratejileri önermektedir.

References

  • 1. Kumar, J., Narnoliya, L. K., Alok, A., A CRISPR Technology and Biomolecule Production by Synthetic Biology Approach. In Elsevier eBooks, 2019, pp 143–161. https://doi.org/10.1016/b978-0-444-64085-7.00006-x.
  • 2. Van Reenen, C. A., Dicks, L. M. T., Horizontal Gene Transfer Amongst Probiotic Lactic Acid Bacteria and Other Intestinal Microbiota: What Are the Possibilities? A Review. Archives of Microbiology, 2010, 193 (3), 157–168. https://doi.org/10.1007/s00203-010-0668-3.
  • 3. Choi, K. R., Jang, W. D., Yang, D., Cho, J. S., Park, D., Lee, S. Y., Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology With Metabolic Engineering. Trends in Biotechnology, 2019, 37 (8), 817–837. https://doi.org/10.1016/j.tibtech.2019.01.003.
  • 4. Chae, T. U., Choi, S. Y., Kim, J. W., Ko, Y.-S., Lee, S. Y., Recent Advances in Systems Metabolic Engineering Tools and Strategies. Current Opinion in Biotechnology, 2017, 47, 67–82. https://doi.org/10.1016/j.copbio.2017.06.007.
  • 5. Oye, K. A., Esvelt, K. M., Appleton, E., Catteruccia, F., Church, G. M., Kuiken, T. A., Lightfoot, S. B.-Y., McNamara, J., Smidler, A. L., Collins, J. P., Regulating Gene Drives. Science, 2014, 345 (6197), 626–628. https://doi.org/10.1126/science.1254287.
  • 6. Committee on Science, Technology, and Law, Policy and Global Affairs, Board on Life Sciences, Division on Earth and Life Sciences, National Academy of Engineering, National Research Council., Positioning Synthetic Biology to Meet the Challenges of the 21st Century: Summary Report of a Six Academies Symposium Series. Washington (DC): National Academies Press (US), 2013. https://doi.org/10.17226/13316.
  • 7. Ou, Y., Guo, S., Safety Risks and Ethical Governance of Biomedical Applications of Synthetic Biology. Frontiers in Bioengineering and Biotechnology, 2023, 11. https://doi.org/10.3389/fbioe.2023.1292029.
  • 8. Zeng, X., Jiang, H., Yang, G., Ou, Y., Lu, S., Jiang, J., Lei, R., Su, L., Regulation and Management of the Biosecurity for Synthetic Biology. Synthetic and Systems Biotechnology, 2022, 7 (2), 784–790. https://doi.org/10.1016/j.synbio.2022.03.005.
  • 9. Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., Fakiri, E. M., Health Benefits of Probiotics: A Review. ISRN Nutrition 2013, 2013, 1–7. https://doi.org/10.5402/2013/481651.
  • 10. Mack, D. R., Probiotics-mixed Messages. PubMed, 2005, 51, 1455–4.
  • 11. García‐Díez, J., Saraiva, C., Use of Starter Cultures in Foods From Animal Origin to Improve Their Safety. International Journal of Environmental Research and Public Health, 2021, 18 (5), 2544. https://doi.org/10.3390/ijerph18052544.
  • 12. Callaway, E., Controversial CRISPR ‘Gene Drives’ Tested in Mammals for the First Time. Nature, 2018, 559 (7713), 164. https://doi.org/10.1038/d41586-018-05665-1.
  • 13. Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., Liu, D. R., Programmable Base Editing of a•T to G•C in Genomic DNA Without DNA Cleavage. Nature, 2017, 551 (7681), 464–471. https://doi.org/10.1038/nature24644.
  • 14. Nandagopal, N., Elowitz, M. B., Synthetic Biology: Integrated Gene Circuits. Science, 2011, 333 (6047), 1244–1248. https://doi.org/10.1126/science.1207084.
  • 15. Hughes, R. A., Miklos, A. E., Ellington, A. D., Gene Synthesis. In Methods in Enzymology, 2011, pp 277–309. https://doi.org/10.1016/b978-0-12-385120-8.00012-7.
There are 15 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other), Microbiology (Other), Pharmacology and Pharmaceutical Sciences (Other), Food Engineering
Journal Section Review Articles
Authors

Ahmet Koluman 0000-0001-5308-8884

Mahmed Sari Njjar 0000-0003-2494-1086

Fatma Altıntaş 0000-0002-7871-1967

Atakan Konukbay 0000-0003-2404-0253

Early Pub Date August 14, 2024
Publication Date August 15, 2024
Submission Date January 28, 2024
Acceptance Date April 6, 2024
Published in Issue Year 2024

Cite

EndNote Koluman A, Njjar MS, Altıntaş F, Konukbay A (August 1, 2024) Biorisks Associated with Synthetic Biology: Virulence plasmid Transfer to Probiotic or Starter Cultures. International Journal of Life Sciences and Biotechnology 7 2 120–132.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366