Review
BibTex RIS Cite

Ayçiçeğinde (Helianthus annus L.) Moleküler Belirteç Çalışmaları

Year 2024, , 133 - 141, 15.08.2024
https://doi.org/10.38001/ijlsb.1436687

Abstract

Helianthus annus L. olarak da bilenen ayçiçeği bitkisi Asteraceae familyasına aittir. Bu familya iki çenekli bitkiler arasında e büyük familyalardan bir tanesidir ve ayçiçeği dünya çapında ekonomik değeri olan bir bitkidir. Yapılan kloroplast DNA analizlerine göre bu cins günümüzden 4.75-22.7 milyon yıl öncesine dayanmaktadır. Ayçiçeği bitkisinin tohumları %18 protein, %15 selüloz, %9 su, %14 mineral maddeler ve karbonhidrat içermektedir. Yağ içeriği ise %36.9’dan %50.2’ye kadar değişiklik göstermektedir. Bu özellikler ayçiçeğini dünyada önemli bir bitki yapmaktadır. Prensip olarak ayçiçeği yetiştiriciliğinde yağ içeriğinin iyileştirilmesi ve hastalıklara karşı dayanıklı bir bitki elde edilmesi amaçlanmaktadır. Gerek klasik gerekse biyoteknolojik tüm ıslah yöntemleri bu amaçlara katkıda bulunmaya çalışmaktadır. Teknolojinin yardımıyla DNA belirteçleri polimorfizm, genetik akrabalık ve çeşitlilik hakkında faydalı bilgiler sağlamıştır. Islah teknolojisinin gelişmesiyle birlikte, özellikle kromozom üzerinde bilinen bir konuma sahip DNA dizisi olan moleküler markörler, yüksek verimli ve dayanıklı bitki elde etme konusunda yeni yaklaşımlar sağlamıştır. Ayçiçeği ekonomik önemi nedeniyle moleküler marker çalışmalarında Asteraceae familyasında model bitki olmuştur. Biyotik ve abiyotik stres koşulları, yağ içeriği ve besin değeri artışı, su tüketimi vb. durumlara karşı birçok moleküler marker çalışması yapılmıştır. Ekonomik değeri göz önüne alındığında bitki üzerinde yapılan mevcut çalışmalar gelecekteki çalışmalara ışık tutacak olup, su tüketimi, hasat verimliliği, zararlılara dayanıklılık gibi birçok verim kriterinde iyileşmeler gözlemlenebilecektir.

References

  • Funk, V.A., et al., Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. In Biol Skr Edited by Friis I, Balslev H, 2005. 55: p. 343-373.
  • 2. Funk, V.A., et al., Systematics, evolution and biogeography of the Compositae. IAPT, Vienna, 2009. p. 171-18.
  • 3. Bayer, R.G., et al., Compositae In: Kadereit JW, Jeffrey C (eds). The Families and Genera of Vascular Plants, 2007. Vol III, Flowering Plants · Eudicots, Springer Berlin Heidelberg, Germany. https://doi:10.1007/978-3-540-31051-8_7 .
  • 4. Beerlung, D.R., “Sunflower production”. North Dakota State University Ext. Serv, 2007. https://library.ndsu.edu/ir/bitstream/handle/10365/5288/a1331intro.pdf?sequence=1&isAllowed=y (2024, May 05).
  • 5. Hu, J., G. Seiler, and C. Kole, Genetics, genomics and breeding of crop plants: sunflower. Science Publishers, Enfield, 2010. p. 79-109. https://doi.org/10.1201/b10192 .
  • 6. Schilling, E.E, Phylogenetic analysis of Helianthus (Asteraceae) based on chloroplast DNA restriction site data. Theor Appl Genet, 1997. 94: p. 925-933.
  • 7. Khaleghizadeh, A., Effect of morphological traits of plant, head, and seed of sunflower hybrids on house sparrow damage rate. Crop Prot, 2011. 30(3): p.360-367. https://doi.org/10.1016/j.cropro.2010.12.023 .
  • 8. Seghatoleslami, M.J., et al., Effect of irrigation and nitrogen level on yield, yield components, and some morphological traits of sunflower. Pak J Bot, 2012. 44(5): p.1551-1555.
  • 9. Harshavardan, J. Hilli, and Amendeep, Review on Genetics and Breeding of Sunflower (Helianthus annus). The Pharma Innovation Journal, 2021. 10(10): p.1422-1426.
  • 10. Kaya, Y., S. Jocic, and D. Miladinovic, Technological Innovations in Major World Oil Crops. Springer Science+Business Media, LLC, 85 Volume 1: Breeding, 2012. 18(2): p. 256-267.
  • 11. Debaeke, P., et al., Sunflower Crop: Environmental-Friendly and Agroecological, 2017. OCL. https://doi.org/10.1051/ocl/2017020 .
  • 12. Pavani, S., Rekna, B., Sudhakara, S.N., and Moguloju M, Effects of nitrogen and sulfur fertilization on growth, yield and quality of sunflower (Helianthus annuus L.) Crop Res., 2013. 45(1,2&3): p. 152-154. https://doi.org/10.17557/tjfc.40041
  • 13. Ali, A., Ahmad, A., Khaliq, T., Ali, A., et al., Nitrogen nutrition and planting density effects on sunflower growth and yield. Pak. J. Nutr., 2014. 12: p. 1024. https://doi.org/10.3923/pjn.2013.1024.1035 .
  • 14. Alberio, C., N. Izquierdo, and L. Aguirrezábal, Sunflower Crop Physiology and Agronomy. Martínez‐Force (eds.), 2015. p. 53-91. https://doi.org/10.1016/B978-1-893997-94-3.50009-X .
  • 15. Schneiter, A., and J. Miller, Description of Sunflower Growth Stages. Crop Science, 1981. 21(6): p. 901-903. https://doi.org/10.2135/cropsci1981.0011183X002100060024x .
  • 16. Andrianasolo, F.N., et al., Effects of Plant Growth Stage and Leaf Aging on the Response of Transpiration and Photosynthesis to Water Deficit in Sunflower. Functional Plant Biology, 2016. 43(8): p. 797-805. https://doi.org/10.1071/FP15235 .
  • 17. Aguirre, M.R., Velasco, J., and Victoria Ruiz-Mendez M, Characterization of Sunflower Oils Obtain Separately by Pressing and Subsequent Solvent Extraction from a New Line of Seeds Rich in Phytosterols and Conventional Seeds. OCL, 2014. 21(6): p. 605. https://doi.org/10.1051/ocl/2014033 .
  • 18. Friedt, W., M. Ganssmann, and M. Korell, Improvement of sunflower oil quality. In: Proceedings of EUCARPIA – symposium on breeding of oil and protein crops. Albena, 1994. p. 1-30.
  • 19. Joksimovic, J., et al., Genetic control of oleic and linoleic acid contents in sunflower. Heila, 2006. 29: p. 33-40. http://doi.org/10.2298/HEL0644033J .
  • 20. Staughton, J., The amazing benefits of sunflower oil. Oilseeds Focus, 2019. 5(2): p. 40-41.
  • 21. Crites, G.D, Domesticated Sunflower in Fifth Millennium B.P. Temporal Context: New Evidence from Middle Tennessee. Am. Antiq, 1993. 58: p. 146-148. http://doi.org/10.1007/s00334-013-0393-3 .
  • 22. Putt, E.D, Investigations of Breeding Technique for the Sunflower (Helianthus annuus L.). Sci. Agric, 1941. 21: p. 689–702. https://doi.org/10.4141/sa-1941-0045 .
  • 23. Pustovoit, V., S, Selected Works. Agropromizdat: Moscow, Russia, 1990. p. 367.
  • 24. Škorić, D., Sunflower Breeding. J. Edible Oil Ind., 1988. 25: p. 1-90.
  • 25. Škorić, D., Sunflower Breeding. In Sunflower Genetics and Breeding. Škorić, D., Ed; Serbian Academy of Science and Arts: Branch in Novi Sad, Serbia, 2012. p. 165-354.
  • 26. Jocic, S., D. Miladinovic, and Y. Kaya, Breeding and Genetics of Sunflower. Sunflower: Chemistry, Production, Processing, and Utilization, 2015. 710: p. 1-26. https://doi.org/10.1016/B978-1-893997-94-3.50007-6 .

Studies of Molecular Marker in Sunflower (Helianthus annus L.)

Year 2024, , 133 - 141, 15.08.2024
https://doi.org/10.38001/ijlsb.1436687

Abstract

Helianthus annus L., known as sunflower, is belong to Asteraceae family. This family is one of the biggest angiosperm plant families in between dicotyledons and cultivated sunflower is an important oil plant all around the world. Chloroplast DNA analysis reveals that the origin of the genus dates back to 4.75 to 22.7 million years ago. Sunflower seeds contain 18% protein, 15% cellulose, 9% water, 14% minerals and carbohydrates. In general, sunflower seeds contain 35% to 50% oil by weight. The oil content of sunflower had been specified from 36.9% to 50.2%. These features have made sunflower an important plant worldwide. In principle, the breeding of sunflowers aims to improve the oil content and to get a plant resistant to disease. All breeding methods both classical and biotechnological methods try to contribute these aims. With the help of technology DNA markers have provided useful information about polymorphism, genetic relatedness, and diversity. Technology advances in breeding, especially the use of molecular markers, offer new strategies to obtain high-yielding and resistant plants through DNA sequences located at a known location on the chromosome. Sunflower has been a model plant in Asteraceae family in molecular marker studies because of its economic importance. Many molecular marker studies have been conducted against biotic and abiotic stress conditions, increase oil content and nutritional value, and water consumption etc. Considering its economic value, current studies on the plant will shed light on future studies and improvements can be observed in many yield criteria such as water consumption, harvest efficiency, resistance to pests.

References

  • Funk, V.A., et al., Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. In Biol Skr Edited by Friis I, Balslev H, 2005. 55: p. 343-373.
  • 2. Funk, V.A., et al., Systematics, evolution and biogeography of the Compositae. IAPT, Vienna, 2009. p. 171-18.
  • 3. Bayer, R.G., et al., Compositae In: Kadereit JW, Jeffrey C (eds). The Families and Genera of Vascular Plants, 2007. Vol III, Flowering Plants · Eudicots, Springer Berlin Heidelberg, Germany. https://doi:10.1007/978-3-540-31051-8_7 .
  • 4. Beerlung, D.R., “Sunflower production”. North Dakota State University Ext. Serv, 2007. https://library.ndsu.edu/ir/bitstream/handle/10365/5288/a1331intro.pdf?sequence=1&isAllowed=y (2024, May 05).
  • 5. Hu, J., G. Seiler, and C. Kole, Genetics, genomics and breeding of crop plants: sunflower. Science Publishers, Enfield, 2010. p. 79-109. https://doi.org/10.1201/b10192 .
  • 6. Schilling, E.E, Phylogenetic analysis of Helianthus (Asteraceae) based on chloroplast DNA restriction site data. Theor Appl Genet, 1997. 94: p. 925-933.
  • 7. Khaleghizadeh, A., Effect of morphological traits of plant, head, and seed of sunflower hybrids on house sparrow damage rate. Crop Prot, 2011. 30(3): p.360-367. https://doi.org/10.1016/j.cropro.2010.12.023 .
  • 8. Seghatoleslami, M.J., et al., Effect of irrigation and nitrogen level on yield, yield components, and some morphological traits of sunflower. Pak J Bot, 2012. 44(5): p.1551-1555.
  • 9. Harshavardan, J. Hilli, and Amendeep, Review on Genetics and Breeding of Sunflower (Helianthus annus). The Pharma Innovation Journal, 2021. 10(10): p.1422-1426.
  • 10. Kaya, Y., S. Jocic, and D. Miladinovic, Technological Innovations in Major World Oil Crops. Springer Science+Business Media, LLC, 85 Volume 1: Breeding, 2012. 18(2): p. 256-267.
  • 11. Debaeke, P., et al., Sunflower Crop: Environmental-Friendly and Agroecological, 2017. OCL. https://doi.org/10.1051/ocl/2017020 .
  • 12. Pavani, S., Rekna, B., Sudhakara, S.N., and Moguloju M, Effects of nitrogen and sulfur fertilization on growth, yield and quality of sunflower (Helianthus annuus L.) Crop Res., 2013. 45(1,2&3): p. 152-154. https://doi.org/10.17557/tjfc.40041
  • 13. Ali, A., Ahmad, A., Khaliq, T., Ali, A., et al., Nitrogen nutrition and planting density effects on sunflower growth and yield. Pak. J. Nutr., 2014. 12: p. 1024. https://doi.org/10.3923/pjn.2013.1024.1035 .
  • 14. Alberio, C., N. Izquierdo, and L. Aguirrezábal, Sunflower Crop Physiology and Agronomy. Martínez‐Force (eds.), 2015. p. 53-91. https://doi.org/10.1016/B978-1-893997-94-3.50009-X .
  • 15. Schneiter, A., and J. Miller, Description of Sunflower Growth Stages. Crop Science, 1981. 21(6): p. 901-903. https://doi.org/10.2135/cropsci1981.0011183X002100060024x .
  • 16. Andrianasolo, F.N., et al., Effects of Plant Growth Stage and Leaf Aging on the Response of Transpiration and Photosynthesis to Water Deficit in Sunflower. Functional Plant Biology, 2016. 43(8): p. 797-805. https://doi.org/10.1071/FP15235 .
  • 17. Aguirre, M.R., Velasco, J., and Victoria Ruiz-Mendez M, Characterization of Sunflower Oils Obtain Separately by Pressing and Subsequent Solvent Extraction from a New Line of Seeds Rich in Phytosterols and Conventional Seeds. OCL, 2014. 21(6): p. 605. https://doi.org/10.1051/ocl/2014033 .
  • 18. Friedt, W., M. Ganssmann, and M. Korell, Improvement of sunflower oil quality. In: Proceedings of EUCARPIA – symposium on breeding of oil and protein crops. Albena, 1994. p. 1-30.
  • 19. Joksimovic, J., et al., Genetic control of oleic and linoleic acid contents in sunflower. Heila, 2006. 29: p. 33-40. http://doi.org/10.2298/HEL0644033J .
  • 20. Staughton, J., The amazing benefits of sunflower oil. Oilseeds Focus, 2019. 5(2): p. 40-41.
  • 21. Crites, G.D, Domesticated Sunflower in Fifth Millennium B.P. Temporal Context: New Evidence from Middle Tennessee. Am. Antiq, 1993. 58: p. 146-148. http://doi.org/10.1007/s00334-013-0393-3 .
  • 22. Putt, E.D, Investigations of Breeding Technique for the Sunflower (Helianthus annuus L.). Sci. Agric, 1941. 21: p. 689–702. https://doi.org/10.4141/sa-1941-0045 .
  • 23. Pustovoit, V., S, Selected Works. Agropromizdat: Moscow, Russia, 1990. p. 367.
  • 24. Škorić, D., Sunflower Breeding. J. Edible Oil Ind., 1988. 25: p. 1-90.
  • 25. Škorić, D., Sunflower Breeding. In Sunflower Genetics and Breeding. Škorić, D., Ed; Serbian Academy of Science and Arts: Branch in Novi Sad, Serbia, 2012. p. 165-354.
  • 26. Jocic, S., D. Miladinovic, and Y. Kaya, Breeding and Genetics of Sunflower. Sunflower: Chemistry, Production, Processing, and Utilization, 2015. 710: p. 1-26. https://doi.org/10.1016/B978-1-893997-94-3.50007-6 .
There are 26 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Review Articles
Authors

Rabia Vildan Şahin 0000-0001-6661-8960

Early Pub Date August 14, 2024
Publication Date August 15, 2024
Submission Date February 13, 2024
Acceptance Date April 16, 2024
Published in Issue Year 2024

Cite

EndNote Şahin RV (August 1, 2024) Studies of Molecular Marker in Sunflower (Helianthus annus L.). International Journal of Life Sciences and Biotechnology 7 2 133–141.



Follow us on social networks  19277 19276 20153  22366