Research Article
BibTex RIS Cite

The Effect of Kuchala (Arum korolkowii Regel, 1873) Tuber Tincture toIncrease of The Serum Testosterone in The Adult Male Guinea Pigs (Cavia porcellus Linnaeus, 1758)

Year 2024, , 180 - 188, 18.12.2024
https://doi.org/10.38001/ijlsb.1487517

Abstract

Background: Kuchala (Arum korolkowii Regel) is a medicinal plant commonly used in folk medicine among the Kyrgyz people. The tuber tincture of kuchala is traditionally used in small doses to enhance human sexual potency. However, there is no scientific evidence supporting these medicinal effects. Therefore, we decided to study the effect of kuchala tuber tincture on the sexual potency of adult male guinea pigs.
Methods: We investigated the effect of kuchala on 12 male guinea pigs, each approximately 48 months old. A 10% tuber tincture of kuchala in 70% ethanol was prepared and administered orally at a daily dose of 150 µl for 30 days. The study employed ethological, hematological, serum biochemistry, gross anatomical, histological, and statistical methods to collect and analyze the data.
Results: The hematological and serum biochemistry parameters showed significant differences between the control and experimental groups. In the experimental group, the percentage of neutrophils was significantly lower (dр < 0.001) than in the control group, while lymphocyte counts were significantly higher (dр < 0.001). Additionally, RBC counts, hemoglobin (Hgb), hematocrit (Hct), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were all significantly higher in the experimental group (dр < 0.001; dр < 0.001; cр < 0.01; dр < 0.001; dр < 0.001, respectively) compared to the control group. Conversely, the color indicator and mean platelet volume were higher (bр < 0.05) and significantly higher (dр < 0.001) in the control group than in the experimental group. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) were lower in the experimental group than in the control group (both dр < 0.001). Notably, the serum testosterone concentration was much higher (dр < 0.001) in the experimental group. Microscopic examination revealed minor structural damage in the liver tissue of the experimental group, indicating a metabolic disorder. However, the testes in the experimental group showed an improvement in spermatogenesis compared to the control group, suggesting a positive effect on reproductive health.
Conclusion: The 10% kuchala tuber tincture in 70% ethanol has a positive effect on improving the sexual potency of older guinea pigs by increasing testosterone production and enhancing spermatogenesis.

References

  • 1. Suleman S. et al. Treatment of malaria and related symptoms using traditional herbal medicine in Ethiopia. J. Ethnopharmacol., vol. 213, pp. 262–279, 2018. https://doi.org/10.1016/j.jep.2017.10.034.
  • 2. Soelberg J. and Jäger A.K. Comparative ethnobotany of the Wakhi agropastoralist and the Kyrgyz nomads of Afghanistan,” J. Ethnobiol. Ethnomed., vol. 12, no. 1, pp. 1–24, 2016. https://doi.org/10.1186/s13002-015-0063-x.
  • 3. Miara M.D., Bendif H., Hammou M.A. and Teixidor-Toneu I. Ethnobotanical survey of medicinal plants used by nomadic peoples in the Algerian steppe. J. Ethnopharmacol., vol. 219, pp. 248–256, 2018. https://doi.org/10.1016/j.jep.2018.03.011.
  • 4. Sõukand R.and Pieroni A. The importance of a border: Medical, veterinary, and wild food ethnobotany of the Hutsuls living on the Romanian and Ukrainian sides of Bukovina. J. Ethnopharmacol., vol. 185, pp. 17–40, 2016. https://doi.org/10.1016/j.jep.2016.03.009.
  • 5. Tulobaev A.Z. Range of Medicinal Plants Used in Folk Veterinary Medicine in Kyrgyzstan. Manas J. Agric. Vet. Life Sci., vol. 9, no. 2, pp. 91–98, 2019. Available: https://dergipark.org.tr/tr/pub/mjavl/issue/51057/638745.
  • 6. Wang Guo-Qiang, Huang Lu-Qi, Xie Dong-Mei. [Introduction of traditional medicinal plants in Kyrgyzstan]. Zhongguo Zhong Yao Za Zhi, vol. 39, no. 3, pp. 391–396, 2014. Available: https://pubmed.ncbi.nlm.nih.gov/24946536/.
  • 7. Eisenman S.W., Zaurov D.E. and Struwe L. Medicinal plants of Central Asia: Uzbekistan and Kyrgyzstan. 2013. Available: https://link.springer.com/book/10.1007/978-1-4614-3912-7.
  • 8. Haigh A. et al. Arum korolkowii Regel. Plants of the World online, 2011. Available: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:86049-1.
  • 9. Guo R. et al. Botany, Phytochemistry, Pharmacology and Toxicity of Strychnos nux-vomica L.: A Review. Am. J. Chin. Med., vol. 46, no. 1, pp. 1–23, 2018. https://doi.org/10.1142/S0192415X18500015.
  • 10. Patel K., Laloo D., Singh G.K., Gadewar M. and Patel D.K. A review on medicinal uses, analytical techniques and pharmacological activities of Strychnos nux-vomica Linn.: A concise report. Chin. J. Integr. Med., no. 221005, pp. 1–13, 2017. https://doi.org/10.1007/s11655-016-2514-1.
  • 11. Orozbakov S. Manas IV [Манас IV]. 1997. Available: https://new.bizdin.kg/kniga/manas-eposu-4-kitep.
  • 12. Mamai J. Semetey Zhusup Mamais variant [Семетей Жусуп Мамайдын айтуусунда]. 2017, p. 573. Available: http://erkindik.net/forum/topic/690-семетей-жусуп-мамайдын-айтымында/.
  • 13. Institute for the Laboratory Animal Research. Guide FCULA (for the care and use of laboratory animals), 8th ed. Washington (DC): National Akademies Press 2011.
  • 14. du Sert NP, Hurst V, Ahluwalia A , Alam S, Avey MT, Baker M et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol 2020; 16(242) :1-7. https://doi.org/10.1371/journal.pbio.3000410.
  • 15. Williams W.R. and Kendall L.V. Blood collection in the guinea pig (Cavia porcellus). Lab Anim. (NY)., vol. 44, no. 6, pp. 207– 208, 2015. https://doi.org/10.1038/laban.787.
  • 16. Kopteva K.E. et al. The technique of autopsy and removal of organs in laboratory animals [Техника вскрытия и удаления органов у лабораторных животных]. Lab. Anim. Sci. Res., vol. 2, 2019. https://doi.org/10.29296/2618723X-2019-02-05. 188
  • 17. Padilla-Carlin D.J., McMurray D.N. and Hickey A.J. The guinea pig as a model of infectious diseases. Comp. Med., vol. 58, no. 4, pp. 324–340, 2008. Available: https://pubmed.ncbi.nlm.nih.gov/18724774/.
  • 18. Noonan D.E. The Guinea Pig (Cavia porcellus). Handb. Genet., no. September 1994, pp. 275–307, 1975, [Online]. https://www.researchgate.net/publication/235936317_The_Guinea_Pig_Cavia_porcellus.
  • 19. Gradela A. et al. Morphological and morphometric study of the prostate of guinea pigs (Cavia porcellus, Linnaeus, 1758) during postnatal development. Biotemas, vol. 26, no. 4, pp. 221–231, 2013. https://doi.org/10.5007/2175-7925.2013v26n4p221.
  • 20. Rodríguez-Casuriaga R., Geisinger A., Santiñaque F.F., López-Carro B. and Folle G.A. High-purity flow sorting of early meiocytes based on DNA analysis of guinea pig spermatogenic cells. Cytom. Part A, vol. 79 A, no. 8, pp. 625–634, 2011. https://doi.org/10.1002/cyto.a.21067.
  • 21. Nunes A.K.R. et al. Morphological development of the testicles and spermatogenesis in Guinea pigs (Cavia porcellus Linnaeus, 1758). J. Morphol. Sci., vol. 34, no. 3, pp. 143–151, 2017. https://doi.org/10.4322/jms.107816.
  • 22. Acosta S., Dizeyi N., Feinstein R., Pierzynowski S., Abrahamsson P-A. Long-term testosterone stimulation induces hyperplasia in the guinea-pig prostate. Prostate Cancer Prostatic Dis., vol. 7, no. 3, pp. 227–231, 2004. https://doi.org/10.1038/sj.pcan.4500744.
  • 23. Nunes AKR et al. Morphological and functional analysis of spermatogenesis in guinea pigs (Cavia porcellus) from pre-puberty to post-puberty. Pesq. Vet. Bras., vol. 33, pp. 1–7, 2013. Available: https://paperity.org/p/186129324/morphological-and-functionalanalysis-of-spermatogenesis-in-guinea-pigs-cavia-porcellus.
  • 24. Simões L.S. et al. The quantification of testicular cells during the postnatal development in two Caviomorph rodents: The guinea pig (Cavia porcellus) and the cutia (Dasyprocta agouti). An. Acad. Bras. Cienc., vol. 89, no. 3, pp. 1745–1751, 2017. https://doi.org/10.1590/0001-3765201720170038.
  • 25. Uppal V., Bansal N., Pathak D. and Kumar A. Histomorphochemical studies on the epididymis of guinea pig. Indian J. Anim. Sci., vol. 79, no. 8, pp. 809–812, 2009. Available: https://www.researchgate.net/publication/271647135_Histomorphochemical_studies_on_testis_of_guinea_pig.
  • 26. Genzer S.C., Huynh T., Coleman-McCray J.A.D., Harmon J.R., Welch S.R. and Spengler J.R. Hematology and clinical chemistry reference intervals for inbred strain 13/N Guinea pigs (Cavia porcellus). J. Am. Assoc. Lab. Anim. Sci., vol. 58, no. 3, pp. 293– 303, 2019. https://doi.org/10.30802/AALAS-JAALAS-18-000118

The Effect of Kuchala (Arum korolkowii Regel, 1873) Tuber Tincture toIncrease of The Serum Testosterone in The Adult Male Guinea Pigs (Cavia porcellus Linnaeus, 1758)

Year 2024, , 180 - 188, 18.12.2024
https://doi.org/10.38001/ijlsb.1487517

Abstract

Background: Kuchala (Arum korolkowii Regel) is a medicinal plant commonly used in folk medicine among the Kyrgyz people. The tuber tincture of kuchala is traditionally used in small doses to enhance human sexual potency. However, there is no scientific evidence supporting these medicinal effects. Therefore, we decided to study the effect of kuchala tuber tincture on the sexual potency of adult male guinea pigs.
Methods: We investigated the effect of kuchala on 12 male guinea pigs, each approximately 48 months old. A 10% tuber tincture of kuchala in 70% ethanol was prepared and administered orally at a daily dose of 150 µl for 30 days. The study employed ethological, hematological, serum biochemistry, gross anatomical, histological, and statistical methods to collect and analyze the data.
Results: The hematological and serum biochemistry parameters showed significant differences between the control and experimental groups. In the experimental group, the percentage of neutrophils was significantly lower (dр < 0.001) than in the control group, while lymphocyte counts were significantly higher (dр < 0.001). Additionally, RBC counts, hemoglobin (Hgb), hematocrit (Hct), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were all significantly higher in the experimental group (dр < 0.001; dр < 0.001; cр < 0.01; dр < 0.001; dр < 0.001, respectively) compared to the control group. Conversely, the color indicator and mean platelet volume were higher (bр < 0.05) and significantly higher (dр < 0.001) in the control group than in the experimental group. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) were lower in the experimental group than in the control group (both dр < 0.001). Notably, the serum testosterone concentration was much higher (dр < 0.001) in the experimental group. Microscopic examination revealed minor structural damage in the liver tissue of the experimental group, indicating a metabolic disorder. However, the testes in the experimental group showed an improvement in spermatogenesis compared to the control group, suggesting a positive effect on reproductive health.
Conclusion: The 10% kuchala tuber tincture in 70% ethanol has a positive effect on improving the sexual potency of older guinea pigs by increasing testosterone production and enhancing spermatogenesis.

References

  • 1. Suleman S. et al. Treatment of malaria and related symptoms using traditional herbal medicine in Ethiopia. J. Ethnopharmacol., vol. 213, pp. 262–279, 2018. https://doi.org/10.1016/j.jep.2017.10.034.
  • 2. Soelberg J. and Jäger A.K. Comparative ethnobotany of the Wakhi agropastoralist and the Kyrgyz nomads of Afghanistan,” J. Ethnobiol. Ethnomed., vol. 12, no. 1, pp. 1–24, 2016. https://doi.org/10.1186/s13002-015-0063-x.
  • 3. Miara M.D., Bendif H., Hammou M.A. and Teixidor-Toneu I. Ethnobotanical survey of medicinal plants used by nomadic peoples in the Algerian steppe. J. Ethnopharmacol., vol. 219, pp. 248–256, 2018. https://doi.org/10.1016/j.jep.2018.03.011.
  • 4. Sõukand R.and Pieroni A. The importance of a border: Medical, veterinary, and wild food ethnobotany of the Hutsuls living on the Romanian and Ukrainian sides of Bukovina. J. Ethnopharmacol., vol. 185, pp. 17–40, 2016. https://doi.org/10.1016/j.jep.2016.03.009.
  • 5. Tulobaev A.Z. Range of Medicinal Plants Used in Folk Veterinary Medicine in Kyrgyzstan. Manas J. Agric. Vet. Life Sci., vol. 9, no. 2, pp. 91–98, 2019. Available: https://dergipark.org.tr/tr/pub/mjavl/issue/51057/638745.
  • 6. Wang Guo-Qiang, Huang Lu-Qi, Xie Dong-Mei. [Introduction of traditional medicinal plants in Kyrgyzstan]. Zhongguo Zhong Yao Za Zhi, vol. 39, no. 3, pp. 391–396, 2014. Available: https://pubmed.ncbi.nlm.nih.gov/24946536/.
  • 7. Eisenman S.W., Zaurov D.E. and Struwe L. Medicinal plants of Central Asia: Uzbekistan and Kyrgyzstan. 2013. Available: https://link.springer.com/book/10.1007/978-1-4614-3912-7.
  • 8. Haigh A. et al. Arum korolkowii Regel. Plants of the World online, 2011. Available: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:86049-1.
  • 9. Guo R. et al. Botany, Phytochemistry, Pharmacology and Toxicity of Strychnos nux-vomica L.: A Review. Am. J. Chin. Med., vol. 46, no. 1, pp. 1–23, 2018. https://doi.org/10.1142/S0192415X18500015.
  • 10. Patel K., Laloo D., Singh G.K., Gadewar M. and Patel D.K. A review on medicinal uses, analytical techniques and pharmacological activities of Strychnos nux-vomica Linn.: A concise report. Chin. J. Integr. Med., no. 221005, pp. 1–13, 2017. https://doi.org/10.1007/s11655-016-2514-1.
  • 11. Orozbakov S. Manas IV [Манас IV]. 1997. Available: https://new.bizdin.kg/kniga/manas-eposu-4-kitep.
  • 12. Mamai J. Semetey Zhusup Mamais variant [Семетей Жусуп Мамайдын айтуусунда]. 2017, p. 573. Available: http://erkindik.net/forum/topic/690-семетей-жусуп-мамайдын-айтымында/.
  • 13. Institute for the Laboratory Animal Research. Guide FCULA (for the care and use of laboratory animals), 8th ed. Washington (DC): National Akademies Press 2011.
  • 14. du Sert NP, Hurst V, Ahluwalia A , Alam S, Avey MT, Baker M et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol 2020; 16(242) :1-7. https://doi.org/10.1371/journal.pbio.3000410.
  • 15. Williams W.R. and Kendall L.V. Blood collection in the guinea pig (Cavia porcellus). Lab Anim. (NY)., vol. 44, no. 6, pp. 207– 208, 2015. https://doi.org/10.1038/laban.787.
  • 16. Kopteva K.E. et al. The technique of autopsy and removal of organs in laboratory animals [Техника вскрытия и удаления органов у лабораторных животных]. Lab. Anim. Sci. Res., vol. 2, 2019. https://doi.org/10.29296/2618723X-2019-02-05. 188
  • 17. Padilla-Carlin D.J., McMurray D.N. and Hickey A.J. The guinea pig as a model of infectious diseases. Comp. Med., vol. 58, no. 4, pp. 324–340, 2008. Available: https://pubmed.ncbi.nlm.nih.gov/18724774/.
  • 18. Noonan D.E. The Guinea Pig (Cavia porcellus). Handb. Genet., no. September 1994, pp. 275–307, 1975, [Online]. https://www.researchgate.net/publication/235936317_The_Guinea_Pig_Cavia_porcellus.
  • 19. Gradela A. et al. Morphological and morphometric study of the prostate of guinea pigs (Cavia porcellus, Linnaeus, 1758) during postnatal development. Biotemas, vol. 26, no. 4, pp. 221–231, 2013. https://doi.org/10.5007/2175-7925.2013v26n4p221.
  • 20. Rodríguez-Casuriaga R., Geisinger A., Santiñaque F.F., López-Carro B. and Folle G.A. High-purity flow sorting of early meiocytes based on DNA analysis of guinea pig spermatogenic cells. Cytom. Part A, vol. 79 A, no. 8, pp. 625–634, 2011. https://doi.org/10.1002/cyto.a.21067.
  • 21. Nunes A.K.R. et al. Morphological development of the testicles and spermatogenesis in Guinea pigs (Cavia porcellus Linnaeus, 1758). J. Morphol. Sci., vol. 34, no. 3, pp. 143–151, 2017. https://doi.org/10.4322/jms.107816.
  • 22. Acosta S., Dizeyi N., Feinstein R., Pierzynowski S., Abrahamsson P-A. Long-term testosterone stimulation induces hyperplasia in the guinea-pig prostate. Prostate Cancer Prostatic Dis., vol. 7, no. 3, pp. 227–231, 2004. https://doi.org/10.1038/sj.pcan.4500744.
  • 23. Nunes AKR et al. Morphological and functional analysis of spermatogenesis in guinea pigs (Cavia porcellus) from pre-puberty to post-puberty. Pesq. Vet. Bras., vol. 33, pp. 1–7, 2013. Available: https://paperity.org/p/186129324/morphological-and-functionalanalysis-of-spermatogenesis-in-guinea-pigs-cavia-porcellus.
  • 24. Simões L.S. et al. The quantification of testicular cells during the postnatal development in two Caviomorph rodents: The guinea pig (Cavia porcellus) and the cutia (Dasyprocta agouti). An. Acad. Bras. Cienc., vol. 89, no. 3, pp. 1745–1751, 2017. https://doi.org/10.1590/0001-3765201720170038.
  • 25. Uppal V., Bansal N., Pathak D. and Kumar A. Histomorphochemical studies on the epididymis of guinea pig. Indian J. Anim. Sci., vol. 79, no. 8, pp. 809–812, 2009. Available: https://www.researchgate.net/publication/271647135_Histomorphochemical_studies_on_testis_of_guinea_pig.
  • 26. Genzer S.C., Huynh T., Coleman-McCray J.A.D., Harmon J.R., Welch S.R. and Spengler J.R. Hematology and clinical chemistry reference intervals for inbred strain 13/N Guinea pigs (Cavia porcellus). J. Am. Assoc. Lab. Anim. Sci., vol. 58, no. 3, pp. 293– 303, 2019. https://doi.org/10.30802/AALAS-JAALAS-18-000118
There are 26 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology, Botany (Other), Bioinformatics and Computational Biology (Other)
Journal Section Research Articles
Authors

Nurbek Aldayarov 0000-0001-8693-5904

Askarbek Tulobaev 0000-0003-1349-6511

Publication Date December 18, 2024
Submission Date May 21, 2024
Acceptance Date June 20, 2024
Published in Issue Year 2024

Cite

EndNote Aldayarov N, Tulobaev A (December 1, 2024) The Effect of Kuchala (Arum korolkowii Regel, 1873) Tuber Tincture toIncrease of The Serum Testosterone in The Adult Male Guinea Pigs (Cavia porcellus Linnaeus, 1758). International Journal of Life Sciences and Biotechnology 7 3 180–188.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366