Research Article
BibTex RIS Cite

2,4-Dichlorophenoxyacetic Acid Loaded Polymeric Nanoparticle Synthesis and Its Effect on Biomass in Medicago sativa Cell Suspension Cultures

Year 2021, , 46 - 60, 15.04.2021
https://doi.org/10.38001/ijlsb.789851

Abstract

Nanoparticular systems, which have made great advances with the development of nanotechnology, have been used extensively recently in pesticide, herbicide plant growth regulators, fertilizer applications, gene transfer technologies and agriculture. It was aimed to synthesize and characterize 2,4-D loaded PLGA nanoparticles and investigate their biological activity in comparison with its free form. Here, the effects of 2,4-D loaded poly (lactic-co-glycolic) acid (PLGA) nanoparticles on biomass in Medicago sativa cell suspension cultures were investigated. Single emulsion solvent evaporation method is used in nanoparticle synthesis. As a result of the characterization of nanoparticles, 63.82% encapsulation efficiency, 60.73% reaction efficiency and 10.51% drug loading capacities were calculated. Particle size was measured as 181.7 ± 3.74 nm, zeta potential -18.3 ± 1.48 and polydispersity index as 0.081.
Compared with the free 2,4-D molecule, it was observed that the addition of 2,4-D to the medium using the nanoparticles drug release system increased the growth of plant cells and the yield of biomass in M. sativa cell suspension cultures.

References

  • 1. Sezer, K., Şeker Pancarı Küspesinden Elde Edilen Aktİf Karbonun Atiksulardaki 2,4-D Ve Metribuzin Pestisitlerinin Adsorpsiyonda Kullanilabilirliğinin Araştırılması, in Kimya Mühendisliği Ana Bilim Dalı. 2010, Hacettepe Üniversitesi.
  • 2. Turan, G.T., 2,4-Diklorofenoksiasetik Asitin (2,4-D) Kılıçkuyruk (Xiphophorus Hellerii) Balıklarının Bazi Dokularında Asetiklorinesteraz (AChE) Aktivitesi Üzerine Etkileri, in Biyoloji Ana Bilim Dalı. 2012, Marmara Üniversitesi.
  • 3. Yalçınkaya, M., Bir Herbisit Olan 2,4-D (Diklorofenoksiasetik Asit)’nin Poecilia reticulata P.,1859’da Medulla Spinalis Üzerine Etkileri, in Biyoloji Ana Bilim Dalı. 2006, Ege Üniversitesi.
  • 4. Gopi, C. and T. Vatsala, In vitro studies on effects of plant growth regulators on callus and suspension culture biomass yield from Gymnema sylvestre R. Br. African Journal of Biotechnology, 2006. 5(12).
  • 5. Dalila, Z.D., H. Jaafar, and A.A. Manaf, Effects of 2, 4-D and kinetin on callus induction of Barringtonia racemosa leaf and endosperm explants in different types of basal media. Asian Journal of Plant Sciences, 2013. 12(1): p. 21-27.
  • 6. Malik, S.I., et al., Effect of 2, 4-dichlorophenoxyacetic acid on callus induction from mature wheat (Triticum aestivum L.) seeds. International Journal of Agriculture & Biology [Internet], 2003: p. 156-159.
  • 7. Tofanelli, M.B.D., P.L. Freitas, and G.E. Pereira, 2, 4-dichlorophenoxyacetic acid as an alternative auxin for rooting of vine rootstock cuttings. Revista Brasileira de Fruticultura, 2014. 36(3): p. 664-672.
  • 8. Cassanego, M., A. Droste, and P. Windisch, Effects of 2, 4-D on the germination of megaspores and initial development of Regnellidium diphyllum Lindman (Monilophyta, Marsileaceae). Brazilian Journal of Biology, 2010. 70(2): p. 361-366.
  • 9. SURMUŞ ASAN, H., Hypericum Retusum Aucher’in Kallus Ve Hücre Süspansiyon Kültürlerinde Hiperisin Türevlerinin Üretilmesi. 2013, Dicle Üniversitesi: Fen Bilimleri Enstitüsü.
  • 10. Phillips, G.C., J.F. Hubstenberger, and E.E. Hansen, Plant regeneration by organogenesis from callus and cell suspension cultures, in Plant Cell, Tissue and Organ Culture. 1995, Springer. p. 67-79.
  • 11. Santo Pereira, A.d.E., H.C. Oliveira, and L.F. Fraceto, Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. Scientific reports, 2019. 9(1): p. 1-10.
  • 12. Alimohammadi, Y.H. and S.W. Joo, PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev, 2014. 15: p. 517-535.
  • 13. Danhier F, A.E., Silva JM, Coco R, Le Breton A, Preat V., Plga-Based Nanoparticles: An Overview Of Biomedical Applications. Journal of Controlled Release, 2012. 161: p. 505-522.
  • 14. Panyam, J. and V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews, 2003. 55(3): p. 329-347.
  • 15. Duranoğlu, D., et al., Synthesis of hesperetin-loaded PLGA nanoparticles by two different experimental design methods and biological evaluation of optimized nanoparticles. Nanotechnology, 2018. 29(39): p. 395603.
  • 16. Makadia HK, S.S., Poly Lactic-Co-Glycolic Acid (Plga) As Biodegradable Controlled Drug Delivery Carrier. Polymers, 2011. 3: p. 1377-1397.
  • 17. Kutlu, C., Beyİn Tümörlerİnİn Tedavİsİ İçİn Çİft Etkİlİ Doku İskelesİ-Nanopartİkül Sİstemlerİnİn Gelİştİrİlmesİ in Biyomühendislik. 2011, Hacettepe Üniversitesi.
  • 18. Tong, Y., et al., Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants. Journal of agricultural and food chemistry, 2017. 65(34): p. 7371-7378.
  • 19. CHEN, X.-t. and T. Wang, Preparation and characterization of atrazine-loaded biodegradable PLGA nanospheres. Journal of Integrative Agriculture, 2019. 18(5): p. 1035-1041.
  • 20. Kızılbey, K., Optimization of Rutin-Loaded PLGA Nanoparticles Synthesized by Single-Emulsion Solvent Evaporation Method. ACS Omega, 2019. 4(1): p. 555-562.
  • 21. Kamaly, N., et al., Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews, 2016. 116(4): p. 2602-2663.
  • 22. Van de Voort, F., Fourier transform infrared spectroscopy applied to food analysis. Food Research International, 1992. 25(5): p. 397-403.
  • 23. Heng, D., et al., What is a suitable dissolution method for drug nanoparticles? Pharmaceutical research, 2008. 25(7): p. 1696-1701.
  • 24. G Nava-Arzaluz, M., et al., Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent patents on drug delivery & formulation, 2012. 6(3): p. 209-223.
  • 25. Pascoli, M., et al., State of the art of polymeric nanoparticles as carrier systems with agricultural applications: a minireview. Energy, Ecology and Environment, 2018. 3(3): p. 137-148.
  • 26. Makadia, H.K. and S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011. 3(3): p. 1377-1397.
  • 27. Men, K., et al., Nanoparticle-delivered quercetin for cancer therapy. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2014. 14(6): p. 826-832.
  • 28. Arasoglu, T., et al., Synthesis, characterization and antibacterial activity of juglone encapsulated PLGA nanoparticles. Journal of applied microbiology, 2017. 123(6): p. 1407-1419.
  • 29. Bishayee, K., A.R. Khuda-Bukhsh, and S.-O. Huh, PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Molecules and cells, 2015. 38(6): p. 518.
  • 30. Stella, B., et al., Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci, 2000. 89(11): p. 1452-64. 31. BİLEMSOY, E., Development Of Nonsurfactant Cyclodextrin Nanoparticles Loaded With Anticancer Drug Paclitaxel. Journal of Pharmaceutical Sciences, 2007. 97(4): p. 1519–1529.
  • 32. Cicek, S. and H. Nadaroglu, The use of nanotechnology in the agriculture. Advances in Nano research, 2015. 3(4): p. 207.
  • 33. Chhipa, H., Nanofertilizers and nanopesticides for agriculture. Environmental chemistry letters, 2017. 15(1): p. 15-22.
  • 34. Khalil, S.A., N. Ahmad, and R. Zamir, Gamma radiation induced variation in growth characteristics and production of bioactive compounds during callogenesis in Stevia rebaudiana (Bert.). New Negatives in Plant Science, 2015. 1: p. 1-5.
  • 35. Ma, H.-Y., et al., A Multi-year Beneficial Effect of Seed Priming with Gibberellic Acid-3 (GA 3) on Plant Growth and Production in a Perennial Grass, Leymus chinensis. Scientific reports, 2018. 8(1): p. 1-9.
  • 36. Chronopoulou, L., et al., Microfluidic synthesis of methyl jasmonate-loaded PLGA nanocarriers as a new strategy to improve natural defenses in Vitis vinifera. Scientific Reports, 2019. 9(1): p. 1-9.
  • 37. Lewicka, K., et al., Biodegradable Blends of Grafted Dextrin with PLGA-block-PEG Copolymer as a Carrier for Controlled Release of Herbicides into Soil. Materials, 2020. 13(4): p. 832.
  • 38. Santo Pereira, A.E., et al., Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids and Surfaces B: Biointerfaces, 2017. 150: p. 141-152.
  • 39. Pereira, A., et al., γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydrate polymers, 2017. 157: p. 1862-1873.
  • 40. Kumar, M., Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci, 2000. 3(2): p. 234-258.
  • 41. Pal, S.L., et al., Nanoparticle: An overview of preparation and characterization. Journal of Applied Pharmaceutical Science, 2011. 1(6): p. 228-234.
  • 42. Danhier, F., et al., PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release, 2012. 161(2): p. 505-522.
  • 43. Mora-Huertas, C., H. Fessi, and A. Elaissari, Polymer-based nanocapsules for drug delivery. International journal of pharmaceutics, 2010. 385(1-2): p. 113-142.
  • 44. Schnoor, B., et al., Engineering atrazine loaded poly (lactic-co-glycolic acid) nanoparticles to ameliorate environmental challenges. Journal of agricultural and food chemistry, 2018. 66(30): p. 7889-7898.
Year 2021, , 46 - 60, 15.04.2021
https://doi.org/10.38001/ijlsb.789851

Abstract

References

  • 1. Sezer, K., Şeker Pancarı Küspesinden Elde Edilen Aktİf Karbonun Atiksulardaki 2,4-D Ve Metribuzin Pestisitlerinin Adsorpsiyonda Kullanilabilirliğinin Araştırılması, in Kimya Mühendisliği Ana Bilim Dalı. 2010, Hacettepe Üniversitesi.
  • 2. Turan, G.T., 2,4-Diklorofenoksiasetik Asitin (2,4-D) Kılıçkuyruk (Xiphophorus Hellerii) Balıklarının Bazi Dokularında Asetiklorinesteraz (AChE) Aktivitesi Üzerine Etkileri, in Biyoloji Ana Bilim Dalı. 2012, Marmara Üniversitesi.
  • 3. Yalçınkaya, M., Bir Herbisit Olan 2,4-D (Diklorofenoksiasetik Asit)’nin Poecilia reticulata P.,1859’da Medulla Spinalis Üzerine Etkileri, in Biyoloji Ana Bilim Dalı. 2006, Ege Üniversitesi.
  • 4. Gopi, C. and T. Vatsala, In vitro studies on effects of plant growth regulators on callus and suspension culture biomass yield from Gymnema sylvestre R. Br. African Journal of Biotechnology, 2006. 5(12).
  • 5. Dalila, Z.D., H. Jaafar, and A.A. Manaf, Effects of 2, 4-D and kinetin on callus induction of Barringtonia racemosa leaf and endosperm explants in different types of basal media. Asian Journal of Plant Sciences, 2013. 12(1): p. 21-27.
  • 6. Malik, S.I., et al., Effect of 2, 4-dichlorophenoxyacetic acid on callus induction from mature wheat (Triticum aestivum L.) seeds. International Journal of Agriculture & Biology [Internet], 2003: p. 156-159.
  • 7. Tofanelli, M.B.D., P.L. Freitas, and G.E. Pereira, 2, 4-dichlorophenoxyacetic acid as an alternative auxin for rooting of vine rootstock cuttings. Revista Brasileira de Fruticultura, 2014. 36(3): p. 664-672.
  • 8. Cassanego, M., A. Droste, and P. Windisch, Effects of 2, 4-D on the germination of megaspores and initial development of Regnellidium diphyllum Lindman (Monilophyta, Marsileaceae). Brazilian Journal of Biology, 2010. 70(2): p. 361-366.
  • 9. SURMUŞ ASAN, H., Hypericum Retusum Aucher’in Kallus Ve Hücre Süspansiyon Kültürlerinde Hiperisin Türevlerinin Üretilmesi. 2013, Dicle Üniversitesi: Fen Bilimleri Enstitüsü.
  • 10. Phillips, G.C., J.F. Hubstenberger, and E.E. Hansen, Plant regeneration by organogenesis from callus and cell suspension cultures, in Plant Cell, Tissue and Organ Culture. 1995, Springer. p. 67-79.
  • 11. Santo Pereira, A.d.E., H.C. Oliveira, and L.F. Fraceto, Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. Scientific reports, 2019. 9(1): p. 1-10.
  • 12. Alimohammadi, Y.H. and S.W. Joo, PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev, 2014. 15: p. 517-535.
  • 13. Danhier F, A.E., Silva JM, Coco R, Le Breton A, Preat V., Plga-Based Nanoparticles: An Overview Of Biomedical Applications. Journal of Controlled Release, 2012. 161: p. 505-522.
  • 14. Panyam, J. and V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews, 2003. 55(3): p. 329-347.
  • 15. Duranoğlu, D., et al., Synthesis of hesperetin-loaded PLGA nanoparticles by two different experimental design methods and biological evaluation of optimized nanoparticles. Nanotechnology, 2018. 29(39): p. 395603.
  • 16. Makadia HK, S.S., Poly Lactic-Co-Glycolic Acid (Plga) As Biodegradable Controlled Drug Delivery Carrier. Polymers, 2011. 3: p. 1377-1397.
  • 17. Kutlu, C., Beyİn Tümörlerİnİn Tedavİsİ İçİn Çİft Etkİlİ Doku İskelesİ-Nanopartİkül Sİstemlerİnİn Gelİştİrİlmesİ in Biyomühendislik. 2011, Hacettepe Üniversitesi.
  • 18. Tong, Y., et al., Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants. Journal of agricultural and food chemistry, 2017. 65(34): p. 7371-7378.
  • 19. CHEN, X.-t. and T. Wang, Preparation and characterization of atrazine-loaded biodegradable PLGA nanospheres. Journal of Integrative Agriculture, 2019. 18(5): p. 1035-1041.
  • 20. Kızılbey, K., Optimization of Rutin-Loaded PLGA Nanoparticles Synthesized by Single-Emulsion Solvent Evaporation Method. ACS Omega, 2019. 4(1): p. 555-562.
  • 21. Kamaly, N., et al., Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews, 2016. 116(4): p. 2602-2663.
  • 22. Van de Voort, F., Fourier transform infrared spectroscopy applied to food analysis. Food Research International, 1992. 25(5): p. 397-403.
  • 23. Heng, D., et al., What is a suitable dissolution method for drug nanoparticles? Pharmaceutical research, 2008. 25(7): p. 1696-1701.
  • 24. G Nava-Arzaluz, M., et al., Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent patents on drug delivery & formulation, 2012. 6(3): p. 209-223.
  • 25. Pascoli, M., et al., State of the art of polymeric nanoparticles as carrier systems with agricultural applications: a minireview. Energy, Ecology and Environment, 2018. 3(3): p. 137-148.
  • 26. Makadia, H.K. and S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011. 3(3): p. 1377-1397.
  • 27. Men, K., et al., Nanoparticle-delivered quercetin for cancer therapy. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2014. 14(6): p. 826-832.
  • 28. Arasoglu, T., et al., Synthesis, characterization and antibacterial activity of juglone encapsulated PLGA nanoparticles. Journal of applied microbiology, 2017. 123(6): p. 1407-1419.
  • 29. Bishayee, K., A.R. Khuda-Bukhsh, and S.-O. Huh, PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Molecules and cells, 2015. 38(6): p. 518.
  • 30. Stella, B., et al., Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci, 2000. 89(11): p. 1452-64. 31. BİLEMSOY, E., Development Of Nonsurfactant Cyclodextrin Nanoparticles Loaded With Anticancer Drug Paclitaxel. Journal of Pharmaceutical Sciences, 2007. 97(4): p. 1519–1529.
  • 32. Cicek, S. and H. Nadaroglu, The use of nanotechnology in the agriculture. Advances in Nano research, 2015. 3(4): p. 207.
  • 33. Chhipa, H., Nanofertilizers and nanopesticides for agriculture. Environmental chemistry letters, 2017. 15(1): p. 15-22.
  • 34. Khalil, S.A., N. Ahmad, and R. Zamir, Gamma radiation induced variation in growth characteristics and production of bioactive compounds during callogenesis in Stevia rebaudiana (Bert.). New Negatives in Plant Science, 2015. 1: p. 1-5.
  • 35. Ma, H.-Y., et al., A Multi-year Beneficial Effect of Seed Priming with Gibberellic Acid-3 (GA 3) on Plant Growth and Production in a Perennial Grass, Leymus chinensis. Scientific reports, 2018. 8(1): p. 1-9.
  • 36. Chronopoulou, L., et al., Microfluidic synthesis of methyl jasmonate-loaded PLGA nanocarriers as a new strategy to improve natural defenses in Vitis vinifera. Scientific Reports, 2019. 9(1): p. 1-9.
  • 37. Lewicka, K., et al., Biodegradable Blends of Grafted Dextrin with PLGA-block-PEG Copolymer as a Carrier for Controlled Release of Herbicides into Soil. Materials, 2020. 13(4): p. 832.
  • 38. Santo Pereira, A.E., et al., Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids and Surfaces B: Biointerfaces, 2017. 150: p. 141-152.
  • 39. Pereira, A., et al., γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydrate polymers, 2017. 157: p. 1862-1873.
  • 40. Kumar, M., Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci, 2000. 3(2): p. 234-258.
  • 41. Pal, S.L., et al., Nanoparticle: An overview of preparation and characterization. Journal of Applied Pharmaceutical Science, 2011. 1(6): p. 228-234.
  • 42. Danhier, F., et al., PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release, 2012. 161(2): p. 505-522.
  • 43. Mora-Huertas, C., H. Fessi, and A. Elaissari, Polymer-based nanocapsules for drug delivery. International journal of pharmaceutics, 2010. 385(1-2): p. 113-142.
  • 44. Schnoor, B., et al., Engineering atrazine loaded poly (lactic-co-glycolic acid) nanoparticles to ameliorate environmental challenges. Journal of agricultural and food chemistry, 2018. 66(30): p. 7889-7898.
There are 43 citations in total.

Details

Primary Language English
Subjects Industrial Biotechnology
Journal Section Research Articles
Authors

Fatma Şayan Poyraz 0000-0002-6225-0721

Edibe Abacı This is me 0000-0001-6075-0055

Caner Ertürk This is me 0000-0001-9409-5589

Tayfun Acar 0000-0001-5006-8167

Serap Derman 0000-0002-6662-6642

Semiha Erişen 0000-0002-0542-5118

Banu Mansuroğlu This is me 0000-0001-8440-9118

Publication Date April 15, 2021
Published in Issue Year 2021

Cite

EndNote Poyraz FŞ, Abacı E, Ertürk C, Acar T, Derman S, Erişen S, Mansuroğlu B (April 1, 2021) 2,4-Dichlorophenoxyacetic Acid Loaded Polymeric Nanoparticle Synthesis and Its Effect on Biomass in Medicago sativa Cell Suspension Cultures. International Journal of Life Sciences and Biotechnology 4 1 46–60.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366