Tomato root-knot nematode, is one of the most
important disease agents in tomatoes (Solanum lycopersicum). A practical and effective method for
controlling this disease is by means of tomato genotypes with resistance genes
against this disease. Tomato plants are offered resistance to root-knot
nematode by Mi gene. Phenotypically observing genetic lines in terrestrial
conditions is difficult and time consuming due to concerns about the transfer
of this agent to other plants and their stability. By using the molecular
markers related to resistance genes, this problem can be avoided and the
selection efficiency can be increased. In this project, 34 inbred lines were
tested using 1 CAPS marker associated with Mi gene, resistant and susceptible
genotypes were identified. In the study,
34 genotypes were not found to be homozygous resistant (MI / MI) genotypes
whereas 7 genotypes were found to be heterozygous resistant (MI / mi) and 27
genotypes (mi / mi)homozygous susceptible. As a result of this study, root-knot
nematode is the basis for developing resistant varieties.
1. Andolfo, G., et al., Genome-wide identification and analysis of candidate genes for disease resistance in tomato. Molecular breeding, 2014. 33(1): p. 227-233.
2. Mwesige, R., A. Seid, and W. Wesemael, Root-knot nematodes on tomatoes in Kyenjojo and Masaka districts in Uganda. African Journal of Agricultural Research, 2016. 11(38): p. 3598-3606.
3. Chen, R.G., et al., Functional Characterization of Mi, a root‐knot nematode resistance gene from tomato (Lycopersicon esculentum L.). Journal of Integrative Plant Biology, 2006. 48(12): p. 1458-1465.4. Devran, Z., et al., Comparison of PCR-based molecular markers for identification of Mi gene. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 2013. 63(5): p. 395-402.
5. Gleason, C.A., Q.L. Liu, and V.M. Williamson, Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi-1 leads to acquisition of virulence. Molecular Plant-Microbe Interactions, 2008. 21(5): p. 576-585.
6. Devran, Z. and İ.H. Elekçioğlu, The Screening of F_2 Plants for the Root-Knot Nematode Resistance Gene, Mi by PCR in Tomato. Turkish Journal of Agriculture and Forestry, 2004. 28(4): p. 253-257.
7. Elekcioglu, I., et al., Plant parasitic nematodes in the east Mediterranean region of Turkey. Nematologia Mediterranea, 1994. 22(1): p. 59-63.
8. Elekçioğlu, İ. and N. Uygun. Occurrence and distribution of plant parasitic nematodes in cash crop in eastern Mediterranean Region of Türkiye. in Proc. of 9th Congress of the Mediterranean Phytopathological Union-Kuşadası-Aydın-Türkiye. 1994.
9. Duca, M., et al., THE SCREENING OF SEVERAL MOLDAVIAN TOMATO CULTIVARS FOR IDENTIFICATION OF MI-NEMATODE RESISTANCE GENE. Analele Stiintifice ale Universitatii" Al. I. Cuza" din Iasi, 2012. 58(1): p. 5.
10. Molinari, S. and N. Baser, Induction of resistance to root-knot nematodes by SAR elicitors in tomato. Crop Protection, 2010. 29(11): p. 1354-1362.
11. Dhall, R., Breeding for biotic stresses resistance in vegetable crops: a review. J. Crop Sci. Technol, 2015. 4: p. 13-27.
12. Smith, P.G. Embryo culture of a tomato species hybrid. in Proc. Amer. Soc. Hort. Sci. 1944.
13. Roberts, P. and I. Thomason, Variability in reproduction of isolates of Meloidogyne incognita and Meloidogyne javanica on resistant tomato genotypes. Plant disease (USA), 1986.
14. Tzortzakakis, E.A., et al., Occurrence of resistance-breaking populations of root-knot nematodes on tomato in Greece. European Journal of Plant Pathology, 2005. 113(1): p. 101-105.
15. Guan, T., et al., Resistance-breaking population of Meloidogyne incognita utilizes plant peroxidase to scavenge reactive oxygen species, thereby promoting parasitism on tomato carrying Mi-1 gene. Biochemical and biophysical research communications, 2017. 482(1): p. 1-7.
16. Ammati, M., I. Thomason, and H. McKinney, Retention of resistance to Meloidogyne incognita in Lycopersicon genotypes at high soil temperature. Journal of Nematology, 1986. 18(4): p. 491.
17. Williamson, V., et al., A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theoretical and Applied Genetics, 1994. 87(7): p. 757-763.
Year 2018,
Volume: 1 Issue: 1, 10 - 16, 20.07.2018
1. Andolfo, G., et al., Genome-wide identification and analysis of candidate genes for disease resistance in tomato. Molecular breeding, 2014. 33(1): p. 227-233.
2. Mwesige, R., A. Seid, and W. Wesemael, Root-knot nematodes on tomatoes in Kyenjojo and Masaka districts in Uganda. African Journal of Agricultural Research, 2016. 11(38): p. 3598-3606.
3. Chen, R.G., et al., Functional Characterization of Mi, a root‐knot nematode resistance gene from tomato (Lycopersicon esculentum L.). Journal of Integrative Plant Biology, 2006. 48(12): p. 1458-1465.4. Devran, Z., et al., Comparison of PCR-based molecular markers for identification of Mi gene. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 2013. 63(5): p. 395-402.
5. Gleason, C.A., Q.L. Liu, and V.M. Williamson, Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi-1 leads to acquisition of virulence. Molecular Plant-Microbe Interactions, 2008. 21(5): p. 576-585.
6. Devran, Z. and İ.H. Elekçioğlu, The Screening of F_2 Plants for the Root-Knot Nematode Resistance Gene, Mi by PCR in Tomato. Turkish Journal of Agriculture and Forestry, 2004. 28(4): p. 253-257.
7. Elekcioglu, I., et al., Plant parasitic nematodes in the east Mediterranean region of Turkey. Nematologia Mediterranea, 1994. 22(1): p. 59-63.
8. Elekçioğlu, İ. and N. Uygun. Occurrence and distribution of plant parasitic nematodes in cash crop in eastern Mediterranean Region of Türkiye. in Proc. of 9th Congress of the Mediterranean Phytopathological Union-Kuşadası-Aydın-Türkiye. 1994.
9. Duca, M., et al., THE SCREENING OF SEVERAL MOLDAVIAN TOMATO CULTIVARS FOR IDENTIFICATION OF MI-NEMATODE RESISTANCE GENE. Analele Stiintifice ale Universitatii" Al. I. Cuza" din Iasi, 2012. 58(1): p. 5.
10. Molinari, S. and N. Baser, Induction of resistance to root-knot nematodes by SAR elicitors in tomato. Crop Protection, 2010. 29(11): p. 1354-1362.
11. Dhall, R., Breeding for biotic stresses resistance in vegetable crops: a review. J. Crop Sci. Technol, 2015. 4: p. 13-27.
12. Smith, P.G. Embryo culture of a tomato species hybrid. in Proc. Amer. Soc. Hort. Sci. 1944.
13. Roberts, P. and I. Thomason, Variability in reproduction of isolates of Meloidogyne incognita and Meloidogyne javanica on resistant tomato genotypes. Plant disease (USA), 1986.
14. Tzortzakakis, E.A., et al., Occurrence of resistance-breaking populations of root-knot nematodes on tomato in Greece. European Journal of Plant Pathology, 2005. 113(1): p. 101-105.
15. Guan, T., et al., Resistance-breaking population of Meloidogyne incognita utilizes plant peroxidase to scavenge reactive oxygen species, thereby promoting parasitism on tomato carrying Mi-1 gene. Biochemical and biophysical research communications, 2017. 482(1): p. 1-7.
16. Ammati, M., I. Thomason, and H. McKinney, Retention of resistance to Meloidogyne incognita in Lycopersicon genotypes at high soil temperature. Journal of Nematology, 1986. 18(4): p. 491.
17. Williamson, V., et al., A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theoretical and Applied Genetics, 1994. 87(7): p. 757-763.
Secgin Z, Arvas YE, Ssendawula SP, Kaya Y (July 1, 2018) Selection of Root-Knot Nematod Resistance in Inbred Tomato Lines Using CAPS Molecular Markers. International Journal of Life Sciences and Biotechnology 1 1 10–16.