Tea saponins are normal non-ionic surfactants with surface-dynamic (surfactant) properties, they are separated from the Camellia oleifera seed as a likely source. These saponins are more prominent than 10% of the camellia seed and are used as a natural tenside that is thoughtful to the environment. Camellia seed oil containing tea saponins was used as the main material; we set three groups: Low, Medium, and High groups with different doses. 30 days feeding in mice experiment. Mice blood and organs were taken to analyze the chronic toxicity; in 30 d used olive oil as a control group. The results showed, there were significant differences in some index and there were no vital changes in the other indicators. According to the analysis of the results, camellia oil containing tea saponins has some toxic effect in functions of viscera, peripheral blood in mice. The results offer a theoretical basis for the utilization and safety of camellia oil containing tea saponins and promote the vital significance of the in taking securely and healthily of camellia oil. The chronic toxicity of camellia oil containing tea saponin was not strong, feeding on mice in a high dose 30 days each viscera and other features and growth has no significant impacts.
the Chinese Scholarship (CSC) for financial support.
Thanks
The first author thanks the Chinese Scholarship (CSC) for financial support.
References
References
1. Pu, E. Y. Studies on stability of liquid/liquid dispersions: Theory and practice [D]. Zrich: Switzerland Union Higher Industry College Doctor Degree Thesis, 1995.
2. Wu, X., Huang Y., Xie Z. Health functions and prospective of Camellia oil. J. Food Sci. Technol., 2005, (5): 94-96.
3. Hu, J.B. and Yang G.L. Physiochemical characteristics, fatty acid profile and tocopherol composition of the oil from Camellia oleifera Abel cultivated in Henan, China. GRASAS Y ACEITES, 2018, 69 (2): 1-9; https://doi.org/10.3989/gya.1224172.
4. Wu, H., Li C., Li Z., Liu R., Zhang A., Xiao Z., Ma L., Li. J. and Deng S. Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. Seeds under subcritical water conditions. Fuel Proc. Tech., 2018. , 174: 88–94. https://doi.org/10.1016/j.fuproc.2018.02. 014.
5. Qiu, H., Chen, D., Liu, Y.,Wu, X., Ren, R., Cheng, Q. Study on anti atherosclor-esis effects of daidai flavones dropping pills on hyperlipidemia rats. Chin. J. Mod. Appl. Pharm. 2011, 28: 597–601.
6. Ling T., Min F., Li Bing, Chen Yuelong, Shi Liying, Wang Yong-qi. Research progress of Camellia oleifera saponin. J. Central pharm, 2008, 03:( 330-333.
7. Hostettmann, K. and Marston A. Saponins Cambridge: Cambridge University Press. p. 3ff. ISBN 978-0-521-32970-5. OCLC 29670810, 1995. https://doi.org/10.1017/ CBO 9780511565113.
8. Xu D. J., Yan, S. Experimental animals and food safety. Chinese J. comp., 2011, Med. Z 1: 27-29.
9. Yuan, X.Z., Meng, Y.T., Zeng, G.M, Fang, Y.Y., Shi. J.G. Evaluation of tea-derived bio-surfactant on removing heavy metal ions from dilute wastewater by ion flotation. J. Colloids Surf. A: Physicochem. Eng. Asp. , 2007, 317:1-3, 256-261.
10. Ainwale, S.S., Chipade, V.D., Dewani, A.P., Shiradkar, M.R., Bakal R.L., Chandewar A.V. Application of Chromatography in Phytochemistry. International Journal of Universal Pharmacy and Life Sciences 2012, 2(2): 394-414.
11. Płotka-Wasylka, J., Szczepanska, N., de la Guardia, M., Namiesnik, J. Miniaturized solid-phase extraction techniques. Trends Anal. Chem., 2015, 73: 19–38. https://doi.org/10.1016/j.trac.2015.04.026.
13. Abliz, A., Aji, Q., Abdusalam, E., Sun, X., Abdurahman, A., Zhou, W., Moore, N., Umar, A. Effect of Cydonia oblonga Mill. Leaf extract on serum lipids and liver function in a rat model of hyperlipidaemia. J. Ethnopharm. 2014, 151: 970–974. https://doi.org/10.1016/j.jep.2013.12.010.
14. Chen B., Umar A., Tohti I., Tian S., Imam G. Experimental study on regulation of lipid metabolism by extract of Ocimum basilicum L. in rats with hyper-lipidemia. China Tradit. Pat. Med, 2009, 31: 844–847.
15. Chen Y., Du T., Zhao Z., Huang X., Zeng X. Effect of compound cur-cumin microcapsules on serum lipids and liver pathology of hyper-lipidemic rats. Chin. Tradit. Pat. Med, 2012, 34: 1025–1029.
16. Ghule B.V.,Ghante M.H., Saoji A.N.,Yeole P.G. Anti hyper- lipidemic effect of the methanolic extract from Lagenaria siceraria stand. Fruit in hyperlipidemic rats. J. Ethnopharmacol, 2009, 124: 333–337. https://doi.org/10.1016/j.jep.2009.04.040.
17. Giovanni M., Roberto G., Maurizio C. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog. Lipid Res, 2009, 48: 1–26.
18. Liu F., Chen H., Zong M., Wei L., Liu C. Effects of total saponins of medicago- sativa on blood lipid metabolism in rats with experimental hyperlipidemia. China J. Exp. Tradit. Med. Formul, 2011, 17: 211–214.
19. Chun, C., Jizhong, Y., Feng Z., Haitao H., Xuxia Z. Normal light activity and applied research saponin Camellia progress. J. Zhejiang Agri. Sci., 2011, 03: 593-598.
20. Shen, T-T., and Wu, S-X. Effects of tea seed oil on hyperlipidemic rats induced by high-fat diet. Food Sci. Technol., 2017, Res. 23 (1): 101-109. https://doi.org/10.3136/fstr.23.101.
Year 2021,
Volume: 4 Issue: 2, 178 - 191, 15.08.2021
References
1. Pu, E. Y. Studies on stability of liquid/liquid dispersions: Theory and practice [D]. Zrich: Switzerland Union Higher Industry College Doctor Degree Thesis, 1995.
2. Wu, X., Huang Y., Xie Z. Health functions and prospective of Camellia oil. J. Food Sci. Technol., 2005, (5): 94-96.
3. Hu, J.B. and Yang G.L. Physiochemical characteristics, fatty acid profile and tocopherol composition of the oil from Camellia oleifera Abel cultivated in Henan, China. GRASAS Y ACEITES, 2018, 69 (2): 1-9; https://doi.org/10.3989/gya.1224172.
4. Wu, H., Li C., Li Z., Liu R., Zhang A., Xiao Z., Ma L., Li. J. and Deng S. Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. Seeds under subcritical water conditions. Fuel Proc. Tech., 2018. , 174: 88–94. https://doi.org/10.1016/j.fuproc.2018.02. 014.
5. Qiu, H., Chen, D., Liu, Y.,Wu, X., Ren, R., Cheng, Q. Study on anti atherosclor-esis effects of daidai flavones dropping pills on hyperlipidemia rats. Chin. J. Mod. Appl. Pharm. 2011, 28: 597–601.
6. Ling T., Min F., Li Bing, Chen Yuelong, Shi Liying, Wang Yong-qi. Research progress of Camellia oleifera saponin. J. Central pharm, 2008, 03:( 330-333.
7. Hostettmann, K. and Marston A. Saponins Cambridge: Cambridge University Press. p. 3ff. ISBN 978-0-521-32970-5. OCLC 29670810, 1995. https://doi.org/10.1017/ CBO 9780511565113.
8. Xu D. J., Yan, S. Experimental animals and food safety. Chinese J. comp., 2011, Med. Z 1: 27-29.
9. Yuan, X.Z., Meng, Y.T., Zeng, G.M, Fang, Y.Y., Shi. J.G. Evaluation of tea-derived bio-surfactant on removing heavy metal ions from dilute wastewater by ion flotation. J. Colloids Surf. A: Physicochem. Eng. Asp. , 2007, 317:1-3, 256-261.
10. Ainwale, S.S., Chipade, V.D., Dewani, A.P., Shiradkar, M.R., Bakal R.L., Chandewar A.V. Application of Chromatography in Phytochemistry. International Journal of Universal Pharmacy and Life Sciences 2012, 2(2): 394-414.
11. Płotka-Wasylka, J., Szczepanska, N., de la Guardia, M., Namiesnik, J. Miniaturized solid-phase extraction techniques. Trends Anal. Chem., 2015, 73: 19–38. https://doi.org/10.1016/j.trac.2015.04.026.
13. Abliz, A., Aji, Q., Abdusalam, E., Sun, X., Abdurahman, A., Zhou, W., Moore, N., Umar, A. Effect of Cydonia oblonga Mill. Leaf extract on serum lipids and liver function in a rat model of hyperlipidaemia. J. Ethnopharm. 2014, 151: 970–974. https://doi.org/10.1016/j.jep.2013.12.010.
14. Chen B., Umar A., Tohti I., Tian S., Imam G. Experimental study on regulation of lipid metabolism by extract of Ocimum basilicum L. in rats with hyper-lipidemia. China Tradit. Pat. Med, 2009, 31: 844–847.
15. Chen Y., Du T., Zhao Z., Huang X., Zeng X. Effect of compound cur-cumin microcapsules on serum lipids and liver pathology of hyper-lipidemic rats. Chin. Tradit. Pat. Med, 2012, 34: 1025–1029.
16. Ghule B.V.,Ghante M.H., Saoji A.N.,Yeole P.G. Anti hyper- lipidemic effect of the methanolic extract from Lagenaria siceraria stand. Fruit in hyperlipidemic rats. J. Ethnopharmacol, 2009, 124: 333–337. https://doi.org/10.1016/j.jep.2009.04.040.
17. Giovanni M., Roberto G., Maurizio C. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog. Lipid Res, 2009, 48: 1–26.
18. Liu F., Chen H., Zong M., Wei L., Liu C. Effects of total saponins of medicago- sativa on blood lipid metabolism in rats with experimental hyperlipidemia. China J. Exp. Tradit. Med. Formul, 2011, 17: 211–214.
19. Chun, C., Jizhong, Y., Feng Z., Haitao H., Xuxia Z. Normal light activity and applied research saponin Camellia progress. J. Zhejiang Agri. Sci., 2011, 03: 593-598.
20. Shen, T-T., and Wu, S-X. Effects of tea seed oil on hyperlipidemic rats induced by high-fat diet. Food Sci. Technol., 2017, Res. 23 (1): 101-109. https://doi.org/10.3136/fstr.23.101.
Ahmed H, Marıod A, Hammoda T (August 1, 2021) The chronic toxicity studies of camellia seed oil containing tea saponins on mice blood and organs. International Journal of Life Sciences and Biotechnology 4 2 178–191.