Review
BibTex RIS Cite

Genetically Modified Natural Plants: Horizontal Gene Transformation

Year 2021, Volume: 4 Issue: 3, 565 - 580, 15.12.2021
https://doi.org/10.38001/ijlsb.929240

Abstract

Current achievements on genome sequencing and bioinformatics revealed that horizontal gene transformation (HGT) is not limited to single cellular organisms and is very common in several developed organisms as well, including plants which brought a new perspective on debate about genetically modified organisms (GMOs). There is a big curiosity whether or not agricultural products of new methodological approaches such as genome editing and nanobiotechnology will be classified as natural products or as GMOs. Transduction of genetic materials such as DNA, RNA or organelle genomes among various organisms brings its own potential to develop resistant/tolerant mechanisms under the light of new knowledges when it is considered with plant breeding perspectives. However, including products of new methodological approaches into GMO discussions will limit both development of related technologies and the potential use of their products. Therefore, concepts of genetic modifications and GMOs need to be reevaluated with a new perspective. The aims of this study are to evaluate the concepts of HGT and GMOs with plant perspective and to provide a more descriptive terminology for GMOs which are currently insufficient to reveal all type of genetic modifications. To be parser and more descriptive GMOs term can be classified as “Evolutionary GMOs, eGMOs”, “Agricultural GMOs, aGMOs” and “Biotechnological GMOs, bGMOs”. This new classification can make a significant contribution to GMOs dilemma.

References

  • Referans1. de Vendomois, J.S., et al., Debate on GMOs health risks after statistical findings in regulatory tests. Int J Biol Sci, 2010. 6(6): p. 590-8.
  • Referans2. Keese, P., Risks from GMOs due to horizontal gene transfer. Environ Biosafety Res, 2008. 7(3): p. 123-49.
  • Referans3. Steinhauser, K.G., Environmental risks of chemicals and genetically modified organisms: a comparison. Part I: Classification and characterisation of risks posed by chemicals and GMOs. Environ Sci Pollut Res Int, 2001. 8(2): p. 120-6.
  • Referans4. Firn, R.D. and C.G. Jones, Secondary metabolism and the risks of GMOs. Nature, 1999. 400(6739): p. 13-4.
  • Referans5. Yoshimatsu, K., et al., [Current status in the commercialization and application of genetically modified plants and their effects on human and livestock health and phytoremediation]. Yakugaku Zasshi, 2012. 132(5): p. 629-74.
  • Referans6. Duguma, H.T., Wild Edible Plant Nutritional Contribution and Consumer Perception in Ethiopia. Int J Food Sci, 2020. 2020: p. 2958623.
  • Referans7. Magnusson, M.K., [Genetically modified plants; a threat to human health?]. Laeknabladid, 2012. 98(11): p. 577.
  • Referans8. Key, S., J.K. Ma, and P.M. Drake, Genetically modified plants and human health. J R Soc Med, 2008. 101(6): p. 290-8.
  • Referans9. Buyel, J.F., E. Stoger, and L. Bortesi, Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res, 2021.
  • Referans10. Bhat, M.A., et al., Mechanistic insights of CRISPR/Cas-mediated genome editing towards enhancing abiotic stress tolerance in plants. Physiol Plant, 2021.
  • Referans11. Demirer, G.S., et al., Nanotechnology to advance CRISPR-Cas genetic engineering of plants. Nat Nanotechnol, 2021. 16(3): p. 243-250.
  • Referans12. Kumari, P., S. Luqman, and A. Meena, Application of the combinatorial approaches of medicinal and aromatic plants with nanotechnology and its impacts on healthcare. Daru, 2019. 27(1): p. 475-489.
  • Referans13. Ocsoy, I., et al., Nanotechnology in Plants. Adv Biochem Eng Biotechnol, 2018. 164: p. 263-275.
  • Referans14. Bock, R., The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci, 2010. 15(1): p. 11-22.
  • Referans15. Chen, R., et al., Adaptive innovation of green plants by horizontal gene transfer. Biotechnol Adv, 2021. 46: p. 107671.
  • Referans16. Bimpong, I.K., et al., Improving salt tolerance of lowland rice cultivar 'Rassi' through marker-aided backcross breeding in West Africa. Plant Sci, 2016. 242: p. 288-299.
  • Referans17. Ellur, R.K., et al., Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci, 2016. 242: p. 330-341.
  • Referans18. Jugulam, M., et al., Transfer of Dicamba Tolerance from Sinapis arvensis to Brassica napus via Embryo Rescue and Recurrent Backcross Breeding. PLoS One, 2015. 10(11): p. e0141418.
  • Referans19. Vogel, K.E., Backcross breeding. Methods Mol Biol, 2009. 526: p. 161-9.
  • Referans20. Jia, Y., et al., Indica and japonica crosses resulting in linkage block and recombination suppression on rice chromosome 12. PLoS One, 2012. 7(8): p. e43066.
  • Referans21. Huang, G. and Y.X. Zhu, Plant polyploidy and evolution. J Integr Plant Biol, 2019. 61(1): p. 4-6.
  • Referans22. Jiao, Y. and A.H. Paterson, Polyploidy-associated genome modifications during land plant evolution. Philos Trans R Soc Lond B Biol Sci, 2014. 369(1648).
  • Referans23. Sattler, M.C., C.R. Carvalho, and W.R. Clarindo, The polyploidy and its key role in plant breeding. Planta, 2016. 243(2): p. 281-96.
  • Referans24. Reddy, K.R., et al., High-Temperature and Drought-Resilience Traits among Interspecific Chromosome Substitution Lines for Genetic Improvement of Upland Cotton. Plants (Basel), 2020. 9(12).
  • Referans25. Li, P.T., et al., Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum x G. barbadense. BMC Genomics, 2017. 18(1): p. 705.
  • Referans26. Wu, J., et al., Genetic effects of individual chromosomes in cotton cultivars detected by using chromosome substitution lines as genetic probes. Genetica, 2010. 138(11-12): p. 1171-9.
  • Referans27. Saha, S., et al., Genetic dissection of chromosome substitution lines of cotton to discover novel Gossypium barbadense L. alleles for improvement of agronomic traits. Theor Appl Genet, 2010. 120(6): p. 1193-205.
  • Referans28. Zhao, X., et al., Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol, 2013. 163(2): p. 721-31.
  • Referans29. Galbraith, D.W., et al., Analysis of nuclear DNA content and ploidy in higher plants. Curr Protoc Cytom, 2001. Chapter 7: p. Unit 7 6.
  • Referans30. Suda, J. and P. Travnicek, Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry--new prospects for plant research. Cytometry A, 2006. 69(4): p. 273-80.
  • Referans31. Zhang, Y., C. Zheng, and D. Sankoff, Pinning down ploidy in paleopolyploid plants. BMC Genomics, 2018. 19(Suppl 5): p. 287.
  • Referans32. Melonek, J., et al., The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nat Commun, 2021. 12(1): p. 1036.
  • Referans33. Zhang, B., et al., Transcriptome Analysis Implicates Involvement of Long Noncoding RNAs in Cytoplasmic Male Sterility and Fertility Restoration in Cotton. Int J Mol Sci, 2019. 20(22).
  • Referans34. Danchin, E.G., Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube? BMC Biol, 2016. 14(1): p. 101.
  • Referans35. Emamalipour, M., et al., Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression. Front Cell Dev Biol, 2020. 8: p. 229.
  • Referans36. Soucy, S.M., J. Huang, and J.P. Gogarten, Horizontal gene transfer: building the web of life. Nat Rev Genet, 2015. 16(8): p. 472-82.
  • Referans37. Yue, J., X. Hu, and J. Huang, Horizontal gene transfer in the innovation and adaptation of land plants. Plant Signal Behav, 2013. 8(5): p. e24130.
  • Referans38. Zhang, Y., et al., Parasitic plant dodder (Cuscuta spp.): A new natural Agrobacterium-to-plant horizontal gene transfer species. Sci China Life Sci, 2020. 63(2): p. 312-316.
  • Referans39. Zhang, D., et al., Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer. BMC Plant Biol, 2014. 14: p. 19.
  • Referans40. Yoshida, S., et al., Horizontal gene transfer by the parasitic plant Striga hermonthica. Science, 2010. 328(5982): p. 1128.
  • Referans41. Ying, S.Y., D.C. Chang, and S.L. Lin, The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol, 2008. 38(3): p. 257-68.
  • Referans42. Ling, J., et al., Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A, 2016. 113(48): p. 13875-13880.
  • Referans43. Li, X., et al., A Novel Strategy for Detecting Recent Horizontal Gene Transfer and Its Application to Rhizobium Strains. Front Microbiol, 2018. 9: p. 973.
  • Referans44. Husnik, F. and J.P. McCutcheon, Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol, 2018. 16(2): p. 67-79.
  • Referans45. Kim, G., et al., Plant science. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science, 2014. 345(6198): p. 808-11.
  • Referans46. Westwood, J.H. and G. Kim, RNA mobility in parasitic plant - host interactions. RNA Biol, 2017. 14(4): p. 450-455.
  • Referans47. Petersen, G., et al., Massive gene loss in mistletoe (Viscum, Viscaceae) mitochondria. Sci Rep, 2015. 5: p. 17588.
  • Referans48. Zervas, A., G. Petersen, and O. Seberg, Mitochondrial genome evolution in parasitic plants. BMC Evol Biol, 2019. 19(1): p. 87.
  • Referans49. Lacroix, B. and V. Citovsky, Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. Annu Rev Phytopathol, 2019. 57: p. 231-251.
  • Referans50. Nester, E.W., Agrobacterium: nature’s genetic engineer. Front. Plant Sci., 2015 8: p. 730.
  • Referans51. Hwang, H.H., M. Yu, and E.M. Lai, Agrobacterium-mediated plant transformation: biology and applications. Arabidopsis Book, 2017. 15: p. e0186.
  • Referans52. Danchin, E.G.J., et al., The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes. Genes (Basel), 2017. 8(10).
  • Referans53. Haegeman, A., J.T. Jones, and E.G. Danchin, Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Mol Plant Microbe Interact, 2011. 24(8): p. 879-87.
  • Referans54. Wu, B., et al., Interdomain lateral gene transfer of an essential ferrochelatase gene in human parasitic nematodes. Proc Natl Acad Sci U S A, 2013. 110(19): p. 7748-53.
  • Referans55. Sitaraman, R., Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities. Microbiome, 2018. 6(1): p. 163.
  • Referans56. Yang, Z., et al., Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nat Plants, 2019. 5(9): p. 991-1001.
  • Referans57. Hao, J., et al., Direct visualization of horizontal gene transfer in cotton plants. J Hered, 2014. 105(6): p. 834-6. Referans58. Stegemann, S. and R. Bock, Exchange of genetic material between cells in plant tissue grafts. Science, 2009. 324(5927): p. 649-51.
  • Referans59. Hertle, A.P., B. Haberl, and R. Bock, Horizontal genome transfer by cell-to-cell travel of whole organelles. Sci Adv, 2021. 7(1).
  • Referans60. Sun, D., Pull in and Push Out: Mechanisms of Horizontal Gene Transfer in Bacteria. Front Microbiol, 2018. 9: p. 2154.
  • Referans61. Kleiner, M., J.M. Petersen, and N. Dubilier, Convergent and divergent evolution of metabolism in sulfur-oxidizing symbionts and the role of horizontal gene transfer. Curr Opin Microbiol, 2012. 15(5): p. 621-31.
  • Referans62. Wang, H., et al., Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020. 368(6493).
  • Referans63. Xia, J., et al., Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell, 2021. 184(7): p. 1693-1705 e17.
  • Referans64. Gao, C., et al., Horizontal gene transfer in plants. Funct Integr Genomics, 2014. 14(1): p. 23-9.
  • Referans65. El Baidouri, M., et al., Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res, 2014. 24(5): p. 831-8.
  • Referans66. Panaud, O., Horizontal transfers of transposable elements in eukaryotes: The flying genes. C R Biol, 2016. 339(7-8): p. 296-9.
  • Referans67. Baltrus, D.A., Exploring the costs of horizontal gene transfer. Trends Ecol Evol, 2013. 28(8): p. 489-95.
  • Referans68. Da Lage, J.L., et al., Gene make-up: rapid and massive intron gains after horizontal transfer of a bacterial alpha-amylase gene to Basidiomycetes. BMC Evol Biol, 2013. 13: p. 40.
  • Referans69. Slomka, S., et al., Experimental Evolution of Bacillus subtilis Reveals the Evolutionary Dynamics of Horizontal Gene Transfer and Suggests Adaptive and Neutral Effects. Genetics, 2020. 216(2): p. 543-558.
  • Referans70. Keeling, P.J. and J.D. Palmer, Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet, 2008. 9(8): p. 605-18.
  • Referans71. Tiwari, P. and H. Bae, Horizontal Gene Transfer and Endophytes: An Implication for the Acquisition of Novel Traits. Plants (Basel), 2020. 9(3).
  • Referans72. Oliveira, P.H., et al., The chromosomal organization of horizontal gene transfer in bacteria. Nat Commun, 2017. 8(1): p. 841.
  • Referans73. van Passel, M., et al., Phylogenetic validation of horizontal gene transfer? Nat Genet, 2004. 36(10): p. 1028.
  • Referans74. Douglas, G.M. and M.G.I. Langille, Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes. Genome Biol Evol, 2019. 11(10): p. 2750-2766.
  • Referans75. Koonin, E.V., K.S. Makarova, and L. Aravind, Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol, 2001. 55: p. 709-42.
  • Referans76. Bhering, L.L., et al., Comparison of methods used to identify superior individuals in genomic selection in plant breeding. Genet Mol Res, 2015. 14(3): p. 10888-96.
  • Referans77. Breseghello, F. and A.S. Coelho, Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J Agric Food Chem, 2013. 61(35): p. 8277-86.
  • Referans78. Crossa, J., et al., Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci, 2017. 22(11): p. 961-975.
  • Referans79. Zhang, L., et al., Regulation of maize kernel weight and carbohydrate metabolism by abscisic acid applied at the early and middle post-pollination stages in vitro. J Plant Physiol, 2017. 216: p. 1-10.
  • Referans80. Sosnowska, K. and T. Cegielska-Taras, Application of in vitro pollination of opened ovaries to obtain Brassica oleracea L. x B. rapa L. hybrids. In Vitro Cell Dev Biol Plant, 2014. 50: p. 257-262.
  • Referans81. Leduc, N., G.C. Douglas, and M. Monnier, Methods for non-stigmatic pollination in Trifolium repens (Papilionaceae): seed set with self- and cross-pollinations in vitro. Theor Appl Genet, 1992. 83(6-7): p. 912-8.
  • Referans82. Yamaguchi, H., Mutation breeding of ornamental plants using ion beams. Breed Sci, 2018. 68(1): p. 71-78.
  • Referans83. Tanaka, A., N. Shikazono, and Y. Hase, Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res, 2010. 51(3): p. 223-33.
  • Referans84. Yan, S., et al., [Research progress on mutation by spaceflight in medicinal plants breeding]. Zhongguo Zhong Yao Za Zhi, 2010. 35(3): p. 385-8.

Genetiği Değiştirilmiş Doğal Bitkiler: Yatay Gen Transferi

Year 2021, Volume: 4 Issue: 3, 565 - 580, 15.12.2021
https://doi.org/10.38001/ijlsb.929240

Abstract

Günümüzde genom sekanslaması ve biyoinformatik alanında elde edilen başarılar daha önce tek hücreli organizmalar ile sınırlı olduğu düşünlen yatay gen transferlerinin (YGT) bitkiler dahil çok sayıda gelişmiş organizmada da yaygın bir şekilde var olduğunun anlaşılması genetiği değiştirilmiş organizmalar (GDOs) kapsamında yapılan tartışmalara farklı bir bakış açısı sunmaktadır. Özellikle biyoteknoloji alanında ortaya konan genom yazılımı ve nanobiyoteknoloji gibi yeni metodolojik yaklaşımlar ve yakın gelecekte bunlara ait tarımsal ürünlerin GDOs özelinde yapılan tartışmalardaki yeri ve bunlara ait ürünlerin doğal ürün katogorisinde değerlendirilip değerlendirilmiyeceği büyük bir merak konusudur. Alglerden yüksek bitkilere kadar çok farklı organizma arasında DNA, RNA, organel genomu gibi değişik boyutlarda ortaya çıkan genetik materyal transferlerinin bitki ıslahı açısından ele alınması ve ortaya çıkan yeni bilgiler ışığında bitkilerde dayanıklıllık/tolerantlık mekanizmalarının geliştirilmesi kendi içerisinde önemli bir potansiyel barındırmaktadır. Ancak güncel metodolojik yaklaşımlar kullanılarak yakın gelecekte ortaya çıkacak ürünlerin de GDOs kapsamındaki tartışmalara dahil edilmesi hem ilgili teknolojilerin gelişmesine hem de ürünlerinin potansiyel kullanımlarının sınırlandırılmasına neden olabilecektir. Bu nedenle genetik modifikasyonlar ile GDOs kavramlarının farklı bir bakış açısı ile ele alınarak yeniden değerlendirilmesi gerekmektedir. Bu çalışmanın amacı genetik modifikasyon kavramını bitkilerde meydana gelen YGT ve GDOs bakış açıları ile ele almak ve ilgili alanda yetersizliği ve eksikliği düşünülen tanımlayıcı bir GDOs terminolojisini ortaya koymaktır. Bu nedenle ayrıştırıcı ve daha tanımlayıcı olması için GDOs teriminin “Evrimsel GDOs, eGDOs”, “Tarımsal GDOs, tGDOs” ve “Biyoteknolojik GDOs, bGDOs” şeklinde sınıflandırılması ilgili alanda yapılan tartışmalara önemli katkılar sunacaktır.

References

  • Referans1. de Vendomois, J.S., et al., Debate on GMOs health risks after statistical findings in regulatory tests. Int J Biol Sci, 2010. 6(6): p. 590-8.
  • Referans2. Keese, P., Risks from GMOs due to horizontal gene transfer. Environ Biosafety Res, 2008. 7(3): p. 123-49.
  • Referans3. Steinhauser, K.G., Environmental risks of chemicals and genetically modified organisms: a comparison. Part I: Classification and characterisation of risks posed by chemicals and GMOs. Environ Sci Pollut Res Int, 2001. 8(2): p. 120-6.
  • Referans4. Firn, R.D. and C.G. Jones, Secondary metabolism and the risks of GMOs. Nature, 1999. 400(6739): p. 13-4.
  • Referans5. Yoshimatsu, K., et al., [Current status in the commercialization and application of genetically modified plants and their effects on human and livestock health and phytoremediation]. Yakugaku Zasshi, 2012. 132(5): p. 629-74.
  • Referans6. Duguma, H.T., Wild Edible Plant Nutritional Contribution and Consumer Perception in Ethiopia. Int J Food Sci, 2020. 2020: p. 2958623.
  • Referans7. Magnusson, M.K., [Genetically modified plants; a threat to human health?]. Laeknabladid, 2012. 98(11): p. 577.
  • Referans8. Key, S., J.K. Ma, and P.M. Drake, Genetically modified plants and human health. J R Soc Med, 2008. 101(6): p. 290-8.
  • Referans9. Buyel, J.F., E. Stoger, and L. Bortesi, Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res, 2021.
  • Referans10. Bhat, M.A., et al., Mechanistic insights of CRISPR/Cas-mediated genome editing towards enhancing abiotic stress tolerance in plants. Physiol Plant, 2021.
  • Referans11. Demirer, G.S., et al., Nanotechnology to advance CRISPR-Cas genetic engineering of plants. Nat Nanotechnol, 2021. 16(3): p. 243-250.
  • Referans12. Kumari, P., S. Luqman, and A. Meena, Application of the combinatorial approaches of medicinal and aromatic plants with nanotechnology and its impacts on healthcare. Daru, 2019. 27(1): p. 475-489.
  • Referans13. Ocsoy, I., et al., Nanotechnology in Plants. Adv Biochem Eng Biotechnol, 2018. 164: p. 263-275.
  • Referans14. Bock, R., The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci, 2010. 15(1): p. 11-22.
  • Referans15. Chen, R., et al., Adaptive innovation of green plants by horizontal gene transfer. Biotechnol Adv, 2021. 46: p. 107671.
  • Referans16. Bimpong, I.K., et al., Improving salt tolerance of lowland rice cultivar 'Rassi' through marker-aided backcross breeding in West Africa. Plant Sci, 2016. 242: p. 288-299.
  • Referans17. Ellur, R.K., et al., Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci, 2016. 242: p. 330-341.
  • Referans18. Jugulam, M., et al., Transfer of Dicamba Tolerance from Sinapis arvensis to Brassica napus via Embryo Rescue and Recurrent Backcross Breeding. PLoS One, 2015. 10(11): p. e0141418.
  • Referans19. Vogel, K.E., Backcross breeding. Methods Mol Biol, 2009. 526: p. 161-9.
  • Referans20. Jia, Y., et al., Indica and japonica crosses resulting in linkage block and recombination suppression on rice chromosome 12. PLoS One, 2012. 7(8): p. e43066.
  • Referans21. Huang, G. and Y.X. Zhu, Plant polyploidy and evolution. J Integr Plant Biol, 2019. 61(1): p. 4-6.
  • Referans22. Jiao, Y. and A.H. Paterson, Polyploidy-associated genome modifications during land plant evolution. Philos Trans R Soc Lond B Biol Sci, 2014. 369(1648).
  • Referans23. Sattler, M.C., C.R. Carvalho, and W.R. Clarindo, The polyploidy and its key role in plant breeding. Planta, 2016. 243(2): p. 281-96.
  • Referans24. Reddy, K.R., et al., High-Temperature and Drought-Resilience Traits among Interspecific Chromosome Substitution Lines for Genetic Improvement of Upland Cotton. Plants (Basel), 2020. 9(12).
  • Referans25. Li, P.T., et al., Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum x G. barbadense. BMC Genomics, 2017. 18(1): p. 705.
  • Referans26. Wu, J., et al., Genetic effects of individual chromosomes in cotton cultivars detected by using chromosome substitution lines as genetic probes. Genetica, 2010. 138(11-12): p. 1171-9.
  • Referans27. Saha, S., et al., Genetic dissection of chromosome substitution lines of cotton to discover novel Gossypium barbadense L. alleles for improvement of agronomic traits. Theor Appl Genet, 2010. 120(6): p. 1193-205.
  • Referans28. Zhao, X., et al., Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol, 2013. 163(2): p. 721-31.
  • Referans29. Galbraith, D.W., et al., Analysis of nuclear DNA content and ploidy in higher plants. Curr Protoc Cytom, 2001. Chapter 7: p. Unit 7 6.
  • Referans30. Suda, J. and P. Travnicek, Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry--new prospects for plant research. Cytometry A, 2006. 69(4): p. 273-80.
  • Referans31. Zhang, Y., C. Zheng, and D. Sankoff, Pinning down ploidy in paleopolyploid plants. BMC Genomics, 2018. 19(Suppl 5): p. 287.
  • Referans32. Melonek, J., et al., The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nat Commun, 2021. 12(1): p. 1036.
  • Referans33. Zhang, B., et al., Transcriptome Analysis Implicates Involvement of Long Noncoding RNAs in Cytoplasmic Male Sterility and Fertility Restoration in Cotton. Int J Mol Sci, 2019. 20(22).
  • Referans34. Danchin, E.G., Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube? BMC Biol, 2016. 14(1): p. 101.
  • Referans35. Emamalipour, M., et al., Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression. Front Cell Dev Biol, 2020. 8: p. 229.
  • Referans36. Soucy, S.M., J. Huang, and J.P. Gogarten, Horizontal gene transfer: building the web of life. Nat Rev Genet, 2015. 16(8): p. 472-82.
  • Referans37. Yue, J., X. Hu, and J. Huang, Horizontal gene transfer in the innovation and adaptation of land plants. Plant Signal Behav, 2013. 8(5): p. e24130.
  • Referans38. Zhang, Y., et al., Parasitic plant dodder (Cuscuta spp.): A new natural Agrobacterium-to-plant horizontal gene transfer species. Sci China Life Sci, 2020. 63(2): p. 312-316.
  • Referans39. Zhang, D., et al., Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer. BMC Plant Biol, 2014. 14: p. 19.
  • Referans40. Yoshida, S., et al., Horizontal gene transfer by the parasitic plant Striga hermonthica. Science, 2010. 328(5982): p. 1128.
  • Referans41. Ying, S.Y., D.C. Chang, and S.L. Lin, The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol, 2008. 38(3): p. 257-68.
  • Referans42. Ling, J., et al., Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A, 2016. 113(48): p. 13875-13880.
  • Referans43. Li, X., et al., A Novel Strategy for Detecting Recent Horizontal Gene Transfer and Its Application to Rhizobium Strains. Front Microbiol, 2018. 9: p. 973.
  • Referans44. Husnik, F. and J.P. McCutcheon, Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol, 2018. 16(2): p. 67-79.
  • Referans45. Kim, G., et al., Plant science. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science, 2014. 345(6198): p. 808-11.
  • Referans46. Westwood, J.H. and G. Kim, RNA mobility in parasitic plant - host interactions. RNA Biol, 2017. 14(4): p. 450-455.
  • Referans47. Petersen, G., et al., Massive gene loss in mistletoe (Viscum, Viscaceae) mitochondria. Sci Rep, 2015. 5: p. 17588.
  • Referans48. Zervas, A., G. Petersen, and O. Seberg, Mitochondrial genome evolution in parasitic plants. BMC Evol Biol, 2019. 19(1): p. 87.
  • Referans49. Lacroix, B. and V. Citovsky, Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. Annu Rev Phytopathol, 2019. 57: p. 231-251.
  • Referans50. Nester, E.W., Agrobacterium: nature’s genetic engineer. Front. Plant Sci., 2015 8: p. 730.
  • Referans51. Hwang, H.H., M. Yu, and E.M. Lai, Agrobacterium-mediated plant transformation: biology and applications. Arabidopsis Book, 2017. 15: p. e0186.
  • Referans52. Danchin, E.G.J., et al., The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes. Genes (Basel), 2017. 8(10).
  • Referans53. Haegeman, A., J.T. Jones, and E.G. Danchin, Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Mol Plant Microbe Interact, 2011. 24(8): p. 879-87.
  • Referans54. Wu, B., et al., Interdomain lateral gene transfer of an essential ferrochelatase gene in human parasitic nematodes. Proc Natl Acad Sci U S A, 2013. 110(19): p. 7748-53.
  • Referans55. Sitaraman, R., Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities. Microbiome, 2018. 6(1): p. 163.
  • Referans56. Yang, Z., et al., Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nat Plants, 2019. 5(9): p. 991-1001.
  • Referans57. Hao, J., et al., Direct visualization of horizontal gene transfer in cotton plants. J Hered, 2014. 105(6): p. 834-6. Referans58. Stegemann, S. and R. Bock, Exchange of genetic material between cells in plant tissue grafts. Science, 2009. 324(5927): p. 649-51.
  • Referans59. Hertle, A.P., B. Haberl, and R. Bock, Horizontal genome transfer by cell-to-cell travel of whole organelles. Sci Adv, 2021. 7(1).
  • Referans60. Sun, D., Pull in and Push Out: Mechanisms of Horizontal Gene Transfer in Bacteria. Front Microbiol, 2018. 9: p. 2154.
  • Referans61. Kleiner, M., J.M. Petersen, and N. Dubilier, Convergent and divergent evolution of metabolism in sulfur-oxidizing symbionts and the role of horizontal gene transfer. Curr Opin Microbiol, 2012. 15(5): p. 621-31.
  • Referans62. Wang, H., et al., Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020. 368(6493).
  • Referans63. Xia, J., et al., Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell, 2021. 184(7): p. 1693-1705 e17.
  • Referans64. Gao, C., et al., Horizontal gene transfer in plants. Funct Integr Genomics, 2014. 14(1): p. 23-9.
  • Referans65. El Baidouri, M., et al., Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res, 2014. 24(5): p. 831-8.
  • Referans66. Panaud, O., Horizontal transfers of transposable elements in eukaryotes: The flying genes. C R Biol, 2016. 339(7-8): p. 296-9.
  • Referans67. Baltrus, D.A., Exploring the costs of horizontal gene transfer. Trends Ecol Evol, 2013. 28(8): p. 489-95.
  • Referans68. Da Lage, J.L., et al., Gene make-up: rapid and massive intron gains after horizontal transfer of a bacterial alpha-amylase gene to Basidiomycetes. BMC Evol Biol, 2013. 13: p. 40.
  • Referans69. Slomka, S., et al., Experimental Evolution of Bacillus subtilis Reveals the Evolutionary Dynamics of Horizontal Gene Transfer and Suggests Adaptive and Neutral Effects. Genetics, 2020. 216(2): p. 543-558.
  • Referans70. Keeling, P.J. and J.D. Palmer, Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet, 2008. 9(8): p. 605-18.
  • Referans71. Tiwari, P. and H. Bae, Horizontal Gene Transfer and Endophytes: An Implication for the Acquisition of Novel Traits. Plants (Basel), 2020. 9(3).
  • Referans72. Oliveira, P.H., et al., The chromosomal organization of horizontal gene transfer in bacteria. Nat Commun, 2017. 8(1): p. 841.
  • Referans73. van Passel, M., et al., Phylogenetic validation of horizontal gene transfer? Nat Genet, 2004. 36(10): p. 1028.
  • Referans74. Douglas, G.M. and M.G.I. Langille, Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes. Genome Biol Evol, 2019. 11(10): p. 2750-2766.
  • Referans75. Koonin, E.V., K.S. Makarova, and L. Aravind, Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol, 2001. 55: p. 709-42.
  • Referans76. Bhering, L.L., et al., Comparison of methods used to identify superior individuals in genomic selection in plant breeding. Genet Mol Res, 2015. 14(3): p. 10888-96.
  • Referans77. Breseghello, F. and A.S. Coelho, Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J Agric Food Chem, 2013. 61(35): p. 8277-86.
  • Referans78. Crossa, J., et al., Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci, 2017. 22(11): p. 961-975.
  • Referans79. Zhang, L., et al., Regulation of maize kernel weight and carbohydrate metabolism by abscisic acid applied at the early and middle post-pollination stages in vitro. J Plant Physiol, 2017. 216: p. 1-10.
  • Referans80. Sosnowska, K. and T. Cegielska-Taras, Application of in vitro pollination of opened ovaries to obtain Brassica oleracea L. x B. rapa L. hybrids. In Vitro Cell Dev Biol Plant, 2014. 50: p. 257-262.
  • Referans81. Leduc, N., G.C. Douglas, and M. Monnier, Methods for non-stigmatic pollination in Trifolium repens (Papilionaceae): seed set with self- and cross-pollinations in vitro. Theor Appl Genet, 1992. 83(6-7): p. 912-8.
  • Referans82. Yamaguchi, H., Mutation breeding of ornamental plants using ion beams. Breed Sci, 2018. 68(1): p. 71-78.
  • Referans83. Tanaka, A., N. Shikazono, and Y. Hase, Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res, 2010. 51(3): p. 223-33.
  • Referans84. Yan, S., et al., [Research progress on mutation by spaceflight in medicinal plants breeding]. Zhongguo Zhong Yao Za Zhi, 2010. 35(3): p. 385-8.
There are 83 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Review Articles
Authors

İskender Tiryaki 0000-0002-7504-2892

Publication Date December 15, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

EndNote Tiryaki İ (December 1, 2021) Genetiği Değiştirilmiş Doğal Bitkiler: Yatay Gen Transferi. International Journal of Life Sciences and Biotechnology 4 3 565–580.



Follow us on social networks  19277 19276 20153  22366