Research Article
BibTex RIS Cite

Aktif Yara Örtülerinin Eldesinde Fotosensitizerlerin Kullanımı

Year 2021, Volume: 4 Issue: 3, 400 - 411, 15.12.2021
https://doi.org/10.38001/ijlsb.933229

Abstract

Işıkla aktive olan fotodinamik tedavi (FDT), uzun zamandan beri dermatoloji, kanseroloji, kulak burun boğaz, jinekoloji, gastroenteroloji, üroloji vb. Çeşitli hastalıklar için onaylanmış bir tedavi türüdür. FDT'de kullanılan FS, uygun dalga boyunda ışığı absorblayarak reaktif oksijen türlerini (ROS) oluşturabilen bir maddedir. ROS, hedef hücrelerde mutajenik veya genotoksik etki olmadan sitotoksik etkiler üreterek antimikrobiyal aktivite göstermektedir. Ek olarak, bu süreçte mikroorganizmalar da direnç geliştiremezler. Fotosensitizör maddede bulunan kromofor gruplar spesifik dalga boyundaki ışığa maruz kalmasıyla hücreleri öldürme yeteneğine sahip olan reaktif oksijen türleri (ROS) ve reaktif azot (RNS) gibi zararlı radikallerin üretimi; ışığın dalga boyuna, şiddetine, kullanılan PS’ün miktarına ve çeşidine bağlıdır. Bu araştırmada oluşan bu reaktif türlerin konsantrasyonu çeşitli faktörler ile ayarlanarak vücut dokularına zarar vermeden hasarlı dokuda enfeksiyona neden olabilecek iç ve dış kaynaklı mikroorganizmalardan arındırması öngörülmektedir. Ayrıca fotosensitizör boyar maddenin içerisine sabitlendiği hidrojel yara örtüsünün; yaranın nem dengesini koruması, doku oluşumunu arttırıcı etki göstermesi, yarayı soğutarak acıyı azaltması, gaz geçişini optimum düzeyde tutarak ortam kaynaklı kontaminasyonu engellemesi, matriks sisteminin emici özelliği sayesinde hasarlı doku üzerindeki fazla sıvıyı emerek yaranın daha çabuk iyileşmesine katkı sağlaması gibi fiziksel özelliklere sahip olması hedeflenmiştir.

Supporting Institution

Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

4087

Thanks

Bu yayında Doktora tez çalışmasının bir parçası yer almaktadır. Doktora tez çalışmasını destekleyen Akdeniz Üniversitesi Bilimsel Araştırma Projeleri birimine teşekkürlerimizi sunarız.

References

  • 1. Braiman-Wiksman L., Solomonik, I. Spira, R. and Tennenbaum, T. Novel insights into wound healing sequence of events. Toxicol Pathol., 2007. 35(6): p. 76-779
  • 2. Shaw, T.J. and Martin, P.J. Wound repair at a glance. Cell Sci., 2009. 122(18):3209-3213.
  • 3. Hackam, D.J. and Ford, H.R. Cellular, biochemical, and clinical aspects of wound healing. Surg. Infect., 2002. 3(1): p. 23-35.
  • 4. Harding, K.G., Moore, K. and Phillips, T.J. Wound chronicity and fibroblast senescence implications for treatment. Int. Wound J., 2005. 2: p. 364-368.
  • 5. Diegelmann, R.F. and Evans, M.C. Wound healıng: an overvıew of acute, fıbrotıc and delayed healıng. Front. Biosci., 2004. 9: p. 283-289.
  • 6. Yamaguchi, Y. and Yoshikawa, K. J. Cutaneous Wound Healing: An Update. The Journal of Dermatology., 2001. 28: p. 521-534.
  • 7. Landis, S.J. Chronic wound infection and antimicrobial use. Adv. Skin Wound Care., 2008. 21(11): p. 531-540.
  • 8. Vecchio, D., Dai, T., Huang, L., Fantetti, L., Roncucci, G. and Hamblin, M. Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistant Staphylococcus aureus and improves wound healing in a mouse model of infected skin abrasion. J. Biophotonics., 2013. 6(9): p. 733-742.
  • 9. Adamian, A.A., Dobysh, S.V., Kilimchuk, L.E., Shandurenko, I.N., Chekmareva, I.A. Development of new biologically active dressings and methodology oftheir use. Khirurgiia (Mosk), 2004. 12: p. 10-14.
  • 10. Livshits, V.S., Polymer dressings for wounds and burns (review). Pharm. Chem. J., 22(7): 1988. p. 515-522.
  • 11. Cornelius, V.J., Majcen, N., Snowden, M.J., Mitchell, J.C. and Voncina, B., Preparation of smart wound dressings based on colloidal microgels and textile fibres. International Symposium on Smart Materials, Nano- and Micro-Smart Systems, 10-13 December, Adelaide, Australia. 2006. p. 11-13
  • 12. Sawant, S.V., Sankpal, S.V., Jadhav, K.R. and Kadam, V.J., Hydrogel as drug deliverysystem. Res. J. Pharm. Technol., 2012. 5(5): p. 561-569.
  • 13. Zilberman, M. and Elsner, J.J., Antibiotic-eluting medical devices for various appli-cations. J. Control Release., 2008. 130(3): p. 202-215.
  • 14. Moura, L.I., Dias, A.M., Carvalho, E. and de Sousa, H.C., Recent advances on thedevelopment of wound dressings for diabetic foot ulcer treatment : a review. Acta Biomater., 2013. 9: p. 7093-7114.
  • 15. Singh, M.R., Saraf, S., Vyas, A., Jain, V., Singh, D., Innovative approaches inwound healing: trajectory and advances. Artif. Cells Nanomed. Biotechnol., 2013. 41: p. 202-212.
  • 16. Bala, S.K. and Thangeswaran, P., Biomaterials in medical applications. Asian Text. J., 2005. 14(6): p. 57-61.
  • 17. Zahedi, P., Rezaeian, I., Ranaei-Siadat, S.O., Jafari, S.H. and Supaphol, P., A reviewon wound dressings with an emphasis on electrospun nanofibrous polymericbandages. Polym. Adv. Technol., 2010. 21(2): p. 77–95.
  • 18. Dai T. et al. Photodynamic Therapy for Acinetobacter baumannii Burn Infections in Mice. Antimicrobial Agents and Chemotherapy., 2009. 53(9): p. 929-3934.
  • 19. Baumgartner, R., Krammer, B., Pottier, R. and Stepp, H. Photodynamic Therapy with ALA: A Clinical Handbook: Basic Principles. In: Pottier, R. (Ed.) Royal Soc. of Chem. Canada, 2006. p. 79-248.
  • 20. Ackroyd R., Kelty. C., Brown, N. and Reed, M. The history of photodetection and photodynamic therapy. Photochem. Photobiol., 2001. 74(5): p. 656-669.
  • 21. Wainwright, M. and Crossley, K.B. Photosensitising agents-circumventing resistance and breaking down bio'lms : a review. International Biodeterioration & Biodegradation., 2004. 53: p. 119-126.
  • 22. Gursoy, H., Ozcakir, C., Ozcakir, T., Tanalp, J. and Yılmaz, S. Photodynamic therapy in dentistry : a literature review. Clin Oral Invest., 2012. 17(4): p. 1113-1125.
  • 23. Konapka, K. and Goslinski, T. Photodynamic therapy in dentistry. J Dent Res., 2007. 86(8): p. 694-707.
  • 24. Baltazar, L.M., Ray, A., Santos, D.A., Cisalpino, P.S., Friedman, A.J. and Nosanchuk, J.D. Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections. Front. Microbiol., 2015. 202(6): p. 1-11
  • 25. Onat H. ve Gül T., Diş hekimliğinde fotodinamik tedavi. Atatürk Üni. Diş Hk. Fak. Derg., 2014. 24(1): p. 119-124.
  • 26. Kutlubay, Z., Pehlivan, Ö. ve Engin, B. Fotodinamik Tedavi. Dermatoz, 2011. 2: p. 391-404.
  • 27. Türsen, B. ve Türsen, Ü., Dermatolojide Işık Yayan Diyot. Mersin Devlet Hastanesi, Deri ve Zührevi Hastalıkları Bölümü, 2015. 2: p. 1-13
  • 28. El-Sayed, M., Sorour, M., Abd El Moneem, N., Talaat, H., Shalaan, H. and El Marsafy, S. Synthesis and properties of natural polymers -grafted- acrylamide. World Appl Sci J., 2011. 13(2): p. 360-368
  • 29. Spagnul, C., Turner, L.C. and Boyle, R.W., Immobilized photosensitizers for antimicrobial applications. J. Photochem. Photobiol. B Biol., 2015. 150: p. 11–30.
  • 30. Vatansever, F., De Melo, W.C.M.A., Avci, P., Vecchio, D., Sadasivam, M., Gupta, A., Chandran, R., Karimi, M., Parizotto, N.A., Yin, R., Tegos, G.P., Hamblin, M.R., Antimicrobial strategies centered around reactive oxygen species bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev., 2013. 37: p. 955–989.

The Use of Photosensitizers in the Production of Active Wound Dressings

Year 2021, Volume: 4 Issue: 3, 400 - 411, 15.12.2021
https://doi.org/10.38001/ijlsb.933229

Abstract

Light-activated photodynamic therapy (PDT) has long been used in dermatology, carcinology, otolaryngology, gynecology, gastroenterology, urology, etc. and it’s a type of treatment that approved for various diseases. PS used in PDT is a substance that can absorb light with the suitable wavelength and form reactive oxygen species (ROS). ROS shows antimicrobial activity by producing cytotoxic effects in target cells without mutagenic or genotoxic effects. In addition, microorganisms cannot develop resistance in this process. The light-induced formation of the harmful radicals such as reactive oxygen (ROS) and reactive nitrogen (RNS) species that are capable of killing cells depends on the intensity and the wavelength of the light and the type and amount of the PS used. It is envisaged that the concentration of these reactive species studied in the study will be adjusted by various factors so as to eliminate the internal and external microorganisms that can cause infection in the damaged tissue without causing harm to healthy tissues. Furthermore, the hydrogel dressings containing a fixed photosensitizer dye in the matrix are synthesized so as to protect the moisture balance on the wound area, to promote tissue formation, to reduce pain by cooling the wound area, to prevent the contamination of the wound while being permeable to gases and to contribute to the healing of the wound by absorbing excess liquid formed by the damaged tissue.

Project Number

4087

References

  • 1. Braiman-Wiksman L., Solomonik, I. Spira, R. and Tennenbaum, T. Novel insights into wound healing sequence of events. Toxicol Pathol., 2007. 35(6): p. 76-779
  • 2. Shaw, T.J. and Martin, P.J. Wound repair at a glance. Cell Sci., 2009. 122(18):3209-3213.
  • 3. Hackam, D.J. and Ford, H.R. Cellular, biochemical, and clinical aspects of wound healing. Surg. Infect., 2002. 3(1): p. 23-35.
  • 4. Harding, K.G., Moore, K. and Phillips, T.J. Wound chronicity and fibroblast senescence implications for treatment. Int. Wound J., 2005. 2: p. 364-368.
  • 5. Diegelmann, R.F. and Evans, M.C. Wound healıng: an overvıew of acute, fıbrotıc and delayed healıng. Front. Biosci., 2004. 9: p. 283-289.
  • 6. Yamaguchi, Y. and Yoshikawa, K. J. Cutaneous Wound Healing: An Update. The Journal of Dermatology., 2001. 28: p. 521-534.
  • 7. Landis, S.J. Chronic wound infection and antimicrobial use. Adv. Skin Wound Care., 2008. 21(11): p. 531-540.
  • 8. Vecchio, D., Dai, T., Huang, L., Fantetti, L., Roncucci, G. and Hamblin, M. Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistant Staphylococcus aureus and improves wound healing in a mouse model of infected skin abrasion. J. Biophotonics., 2013. 6(9): p. 733-742.
  • 9. Adamian, A.A., Dobysh, S.V., Kilimchuk, L.E., Shandurenko, I.N., Chekmareva, I.A. Development of new biologically active dressings and methodology oftheir use. Khirurgiia (Mosk), 2004. 12: p. 10-14.
  • 10. Livshits, V.S., Polymer dressings for wounds and burns (review). Pharm. Chem. J., 22(7): 1988. p. 515-522.
  • 11. Cornelius, V.J., Majcen, N., Snowden, M.J., Mitchell, J.C. and Voncina, B., Preparation of smart wound dressings based on colloidal microgels and textile fibres. International Symposium on Smart Materials, Nano- and Micro-Smart Systems, 10-13 December, Adelaide, Australia. 2006. p. 11-13
  • 12. Sawant, S.V., Sankpal, S.V., Jadhav, K.R. and Kadam, V.J., Hydrogel as drug deliverysystem. Res. J. Pharm. Technol., 2012. 5(5): p. 561-569.
  • 13. Zilberman, M. and Elsner, J.J., Antibiotic-eluting medical devices for various appli-cations. J. Control Release., 2008. 130(3): p. 202-215.
  • 14. Moura, L.I., Dias, A.M., Carvalho, E. and de Sousa, H.C., Recent advances on thedevelopment of wound dressings for diabetic foot ulcer treatment : a review. Acta Biomater., 2013. 9: p. 7093-7114.
  • 15. Singh, M.R., Saraf, S., Vyas, A., Jain, V., Singh, D., Innovative approaches inwound healing: trajectory and advances. Artif. Cells Nanomed. Biotechnol., 2013. 41: p. 202-212.
  • 16. Bala, S.K. and Thangeswaran, P., Biomaterials in medical applications. Asian Text. J., 2005. 14(6): p. 57-61.
  • 17. Zahedi, P., Rezaeian, I., Ranaei-Siadat, S.O., Jafari, S.H. and Supaphol, P., A reviewon wound dressings with an emphasis on electrospun nanofibrous polymericbandages. Polym. Adv. Technol., 2010. 21(2): p. 77–95.
  • 18. Dai T. et al. Photodynamic Therapy for Acinetobacter baumannii Burn Infections in Mice. Antimicrobial Agents and Chemotherapy., 2009. 53(9): p. 929-3934.
  • 19. Baumgartner, R., Krammer, B., Pottier, R. and Stepp, H. Photodynamic Therapy with ALA: A Clinical Handbook: Basic Principles. In: Pottier, R. (Ed.) Royal Soc. of Chem. Canada, 2006. p. 79-248.
  • 20. Ackroyd R., Kelty. C., Brown, N. and Reed, M. The history of photodetection and photodynamic therapy. Photochem. Photobiol., 2001. 74(5): p. 656-669.
  • 21. Wainwright, M. and Crossley, K.B. Photosensitising agents-circumventing resistance and breaking down bio'lms : a review. International Biodeterioration & Biodegradation., 2004. 53: p. 119-126.
  • 22. Gursoy, H., Ozcakir, C., Ozcakir, T., Tanalp, J. and Yılmaz, S. Photodynamic therapy in dentistry : a literature review. Clin Oral Invest., 2012. 17(4): p. 1113-1125.
  • 23. Konapka, K. and Goslinski, T. Photodynamic therapy in dentistry. J Dent Res., 2007. 86(8): p. 694-707.
  • 24. Baltazar, L.M., Ray, A., Santos, D.A., Cisalpino, P.S., Friedman, A.J. and Nosanchuk, J.D. Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections. Front. Microbiol., 2015. 202(6): p. 1-11
  • 25. Onat H. ve Gül T., Diş hekimliğinde fotodinamik tedavi. Atatürk Üni. Diş Hk. Fak. Derg., 2014. 24(1): p. 119-124.
  • 26. Kutlubay, Z., Pehlivan, Ö. ve Engin, B. Fotodinamik Tedavi. Dermatoz, 2011. 2: p. 391-404.
  • 27. Türsen, B. ve Türsen, Ü., Dermatolojide Işık Yayan Diyot. Mersin Devlet Hastanesi, Deri ve Zührevi Hastalıkları Bölümü, 2015. 2: p. 1-13
  • 28. El-Sayed, M., Sorour, M., Abd El Moneem, N., Talaat, H., Shalaan, H. and El Marsafy, S. Synthesis and properties of natural polymers -grafted- acrylamide. World Appl Sci J., 2011. 13(2): p. 360-368
  • 29. Spagnul, C., Turner, L.C. and Boyle, R.W., Immobilized photosensitizers for antimicrobial applications. J. Photochem. Photobiol. B Biol., 2015. 150: p. 11–30.
  • 30. Vatansever, F., De Melo, W.C.M.A., Avci, P., Vecchio, D., Sadasivam, M., Gupta, A., Chandran, R., Karimi, M., Parizotto, N.A., Yin, R., Tegos, G.P., Hamblin, M.R., Antimicrobial strategies centered around reactive oxygen species bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev., 2013. 37: p. 955–989.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Biochemistry and Cell Biology (Other), Medical Microbiology
Journal Section Research Articles
Authors

Gül Merve Gençer 0000-0001-7087-609X

Murat Akarsu This is me 0000-0003-2053-2197

Project Number 4087
Publication Date December 15, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

EndNote Gençer GM, Akarsu M (December 1, 2021) Aktif Yara Örtülerinin Eldesinde Fotosensitizerlerin Kullanımı. International Journal of Life Sciences and Biotechnology 4 3 400–411.



Follow us on social networks  19277 19276 20153  22366