Phenolic content, antioxidant potentials of Saponaria prostrata endemic plant
Year 2022,
Volume: 5 Issue: 1, 1 - 8, 15.04.2022
Ercan Bursal
,
Abdülmelik Aras
,
Mehmet Doğru
,
Ömer Kılıç
Abstract
Saponaria prostrata (S. prostrata) is an endemic and medicinal plant that contains secondary metabolites such as flavonoids, phenolic compounds, fatty acids, and triterpenoids. This study was carried out to evaluate the antioxidant potentials, and phenolic composition of S. prostrata. Antioxidant properties of the ethanol and water extracts of S. prostrata were evaluated by three different in vitro bioanalytical methods including CUPRAC and FRAP reducing antioxidant methods and DPPH radical scavenging antioxidant method. Effective antioxidant potentials of the plant extracts were found especially in the CUPRAC method. Rutin (36.3 µg/g extract) and hesperidin (32.7 µg/g extract) were characterized as major phenolic compounds of S. prostrata using an advanced HPLC technique.
References
- 1. Kartal, M., Intellectual property protection in the natural product drug discovery, traditional herbal medicine and herbal medicinal products. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 2007. 21(2): p. 113-119.
- 2. Essawi, T. and M. Srour, Screening of some Palestinian medicinal plants for antibacterial activity. Journal of ethnopharmacology, 2000. 70(3): p. 343-349.
- 3. Kokoska, L., et al., Screening of some Siberian medicinal plants for antimicrobial activity. Journal of ethnopharmacology, 2002. 82(1): p. 51-53.
- 4. Jeevanandam, J., R. Madhumitha, and N. Saraswathi, Identification of potential phytochemical lead against diabetic cataract: An insilico approach. Journal of Molecular Structure. 1226: p. 129428.
- 5. Pang, S., et al., Effects of dietary patterns combined with dietary phytochemicals on breast cancer metastasis. Life Sciences, 2020: p. 118720.
- 6. Kong, M., et al., Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomedicine & Pharmacotherapy, 2020. 133: p. 110975.
- 7. Du, G.Y., et al., Hesperidin exhibits in vitro and in vivo antitumor effects in human osteosarcoma MG‑63 cells and xenograft mice models via inhibition of cell migration and invasion, cell cycle arrest and induction of mitochondrial‑mediated apoptosis. Oncology letters, 2018. 16(5): p. 6299-6306.
- 8. Li, W., et al., Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation. Materials Science and Engineering: C, 2019. 98: p. 685-695.
- 9. Lee, C.G., et al., Allicin inhibits invasion and migration of breast cancer cells through the suppression of VCAM-1: Regulation of association between p65 and ER-α. Journal of functional foods, 2015. 15: p. 172-185.
- 10. Van Wyk, B.-E., A broad review of commercially important southern African medicinal plants. Journal of ethnopharmacology, 2008. 119(3): p. 342-355.
- 11. Davis, P., Flora of Turkey-VII. 1982, Edinburg University Press.
- 12. ATAŞLAR, E., Morphological and anatomical investigations on the Saponaria kotschyi Boiss.(Caryophyllaceae). Turkish Journal of Botany, 2004. 28(1-2): p. 193-199.
- 13. Davis, P., Satureja L. Flora of Turkey and the Aegean Islands, 1982. 7: p. 314-323.
- 14. Nature, I.U.f.C.o., et al., IUCN Red List categories and criteria. 2001: IUCN.
- 15. Böttcher, S. and S. Drusch, Interfacial properties of saponin extracts and their impact on foam characteristics. Food Biophysics, 2016. 11(1): p. 91-100.
- 16. Petrović, G.M., et al., Phytochemical analysis of Saponaria officinalis L. shoots and flowers essential oils. Natural product research, 2018. 32(3): p. 331-334.
- 17. Koeduka, T., et al., Bioactivity of natural O‐prenylated phenylpropenes from I llicium anisatum leaves and their derivatives against spider mites and fungal pathogens. Plant Biology, 2014. 16(2): p. 451-456.
- 18. Sulaiman, C. and I. Balachandran, LC/MS characterization of antioxidant flavonoids from Tragia involucrata L. Beni-Suef University Journal of Basic and Applied Sciences, 2016. 5(3): p. 231-235.
- 19. Limmongkon, A., et al., Antioxidant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts. Asian Pacific Journal of Tropical Biomedicine, 2017. 7(4): p. 332-338.
- 20. Aras, A., M. Dogru, and E. Bursal, Determination of antioxidant potential of Nepeta nuda subsp. lydiae. Analytical Chemistry Letters, 2016. 6(6): p. 758-765.
- 21. Maadane, A., et al., Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. Journal of biotechnology, 2015. 215: p. 13-19.
- 22. Davis, P., Flora Of Turkey And The East Aegean Islands, Vol. 5, Edinburgh Univ. Pres, Edinburgh, 1975.
- 23. Zubair, M., et al., Effect of Ultrasonic Extraction Regimes on Phenolics and Antioxidant Attributes of Rice (oryza sativa L.) Cultivars. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2018. 37(1): p. 109-119.
- 24. Bingol, M.N. and E. Bursal, LC-MS/MS Analysis of Phenolic Compounds and In Vitro Antioxidant potential of Stachys lavandulifolia Vahl. var. brachydon Boiss. International Letters of Natural Sciences, 2018. 72.
- 25. Buldurun, K., et al., Spectroscopic and Structural Characterization, Enzyme Inhibitions, and Antioxidant Effects of New Ru (II) and Ni (II) Complexes of Schiff Base. Chemistry & biodiversity, 2019.
- 26. Apak, R., et al., The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International journal of food sciences and nutrition, 2006. 57(5-6): p. 292-304.
- 27. Gülçin, İ., et al., Sage (Salvia pilifera): determination of its polyphenol contents, anticholinergic, antidiabetic and antioxidant activities. Journal of Food Measurement and Characterization, 2019: p. 1-13.
- 28. ERTAŞ, A., et al., Antioxidant, anticholinesterase, and antimicrobial activities and fatty acid constituents of Achillea cappadocica Hausskn. et Bornm. Turkish Journal of Chemistry, 2014. 38(4): p. 592-599.
- 29. Aras, A., et al., Polyphenolic Content, Antioxidant Potential and Antimicrobial Activity of Satureja boissieri. Iran. J. Chem. Chem. Eng. Research Article Vol, 2018. 37(6).
- 30. Tohma, H., et al., Measurement of anticancer, antidiabetic and anticholinergic properties of sumac (Rhus coriaria): analysis of its phenolic compounds by LC–MS/MS. Journal of Food Measurement and Characterization, 2019. 13(2): p. 1607-1619.
- 31. Bogolitsyn, K., et al., Relationship between radical scavenging activity and polymolecular properties of brown algae polyphenols. Chemical Papers, 2019: p. 1-9.
- 32. Taslimi, P. and İ. Gulçin, Antioxidant and anticholinergic properties of olivetol. Journal of Food Biochemistry, 2018: p. e12516.
- 33. Yang, J., J. Guo, and J. Yuan, In vitro antioxidant properties of rutin. LWT-Food Science and Technology, 2008. 41(6): p. 1060-1066.
- 34. Calabro, M., et al., The rutin/β-cyclodextrin interactions in fully aqueous solution: spectroscopic studies and biological assays. Journal of pharmaceutical and biomedical analysis, 2005. 36(5): p. 1019-1027.
- 35. Khan, M.M., et al., Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotoxicity research, 2012. 22(1): p. 1-15.
- 36. Qian, Y., et al., New application of rutin: Repair the toxicity of emerging perfluoroalkyl substance to Pseudomonas stutzeri. Ecotoxicology and Environmental Safety, 2020. 201: p. 110879.
Year 2022,
Volume: 5 Issue: 1, 1 - 8, 15.04.2022
Ercan Bursal
,
Abdülmelik Aras
,
Mehmet Doğru
,
Ömer Kılıç
References
- 1. Kartal, M., Intellectual property protection in the natural product drug discovery, traditional herbal medicine and herbal medicinal products. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 2007. 21(2): p. 113-119.
- 2. Essawi, T. and M. Srour, Screening of some Palestinian medicinal plants for antibacterial activity. Journal of ethnopharmacology, 2000. 70(3): p. 343-349.
- 3. Kokoska, L., et al., Screening of some Siberian medicinal plants for antimicrobial activity. Journal of ethnopharmacology, 2002. 82(1): p. 51-53.
- 4. Jeevanandam, J., R. Madhumitha, and N. Saraswathi, Identification of potential phytochemical lead against diabetic cataract: An insilico approach. Journal of Molecular Structure. 1226: p. 129428.
- 5. Pang, S., et al., Effects of dietary patterns combined with dietary phytochemicals on breast cancer metastasis. Life Sciences, 2020: p. 118720.
- 6. Kong, M., et al., Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomedicine & Pharmacotherapy, 2020. 133: p. 110975.
- 7. Du, G.Y., et al., Hesperidin exhibits in vitro and in vivo antitumor effects in human osteosarcoma MG‑63 cells and xenograft mice models via inhibition of cell migration and invasion, cell cycle arrest and induction of mitochondrial‑mediated apoptosis. Oncology letters, 2018. 16(5): p. 6299-6306.
- 8. Li, W., et al., Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation. Materials Science and Engineering: C, 2019. 98: p. 685-695.
- 9. Lee, C.G., et al., Allicin inhibits invasion and migration of breast cancer cells through the suppression of VCAM-1: Regulation of association between p65 and ER-α. Journal of functional foods, 2015. 15: p. 172-185.
- 10. Van Wyk, B.-E., A broad review of commercially important southern African medicinal plants. Journal of ethnopharmacology, 2008. 119(3): p. 342-355.
- 11. Davis, P., Flora of Turkey-VII. 1982, Edinburg University Press.
- 12. ATAŞLAR, E., Morphological and anatomical investigations on the Saponaria kotschyi Boiss.(Caryophyllaceae). Turkish Journal of Botany, 2004. 28(1-2): p. 193-199.
- 13. Davis, P., Satureja L. Flora of Turkey and the Aegean Islands, 1982. 7: p. 314-323.
- 14. Nature, I.U.f.C.o., et al., IUCN Red List categories and criteria. 2001: IUCN.
- 15. Böttcher, S. and S. Drusch, Interfacial properties of saponin extracts and their impact on foam characteristics. Food Biophysics, 2016. 11(1): p. 91-100.
- 16. Petrović, G.M., et al., Phytochemical analysis of Saponaria officinalis L. shoots and flowers essential oils. Natural product research, 2018. 32(3): p. 331-334.
- 17. Koeduka, T., et al., Bioactivity of natural O‐prenylated phenylpropenes from I llicium anisatum leaves and their derivatives against spider mites and fungal pathogens. Plant Biology, 2014. 16(2): p. 451-456.
- 18. Sulaiman, C. and I. Balachandran, LC/MS characterization of antioxidant flavonoids from Tragia involucrata L. Beni-Suef University Journal of Basic and Applied Sciences, 2016. 5(3): p. 231-235.
- 19. Limmongkon, A., et al., Antioxidant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts. Asian Pacific Journal of Tropical Biomedicine, 2017. 7(4): p. 332-338.
- 20. Aras, A., M. Dogru, and E. Bursal, Determination of antioxidant potential of Nepeta nuda subsp. lydiae. Analytical Chemistry Letters, 2016. 6(6): p. 758-765.
- 21. Maadane, A., et al., Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. Journal of biotechnology, 2015. 215: p. 13-19.
- 22. Davis, P., Flora Of Turkey And The East Aegean Islands, Vol. 5, Edinburgh Univ. Pres, Edinburgh, 1975.
- 23. Zubair, M., et al., Effect of Ultrasonic Extraction Regimes on Phenolics and Antioxidant Attributes of Rice (oryza sativa L.) Cultivars. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2018. 37(1): p. 109-119.
- 24. Bingol, M.N. and E. Bursal, LC-MS/MS Analysis of Phenolic Compounds and In Vitro Antioxidant potential of Stachys lavandulifolia Vahl. var. brachydon Boiss. International Letters of Natural Sciences, 2018. 72.
- 25. Buldurun, K., et al., Spectroscopic and Structural Characterization, Enzyme Inhibitions, and Antioxidant Effects of New Ru (II) and Ni (II) Complexes of Schiff Base. Chemistry & biodiversity, 2019.
- 26. Apak, R., et al., The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International journal of food sciences and nutrition, 2006. 57(5-6): p. 292-304.
- 27. Gülçin, İ., et al., Sage (Salvia pilifera): determination of its polyphenol contents, anticholinergic, antidiabetic and antioxidant activities. Journal of Food Measurement and Characterization, 2019: p. 1-13.
- 28. ERTAŞ, A., et al., Antioxidant, anticholinesterase, and antimicrobial activities and fatty acid constituents of Achillea cappadocica Hausskn. et Bornm. Turkish Journal of Chemistry, 2014. 38(4): p. 592-599.
- 29. Aras, A., et al., Polyphenolic Content, Antioxidant Potential and Antimicrobial Activity of Satureja boissieri. Iran. J. Chem. Chem. Eng. Research Article Vol, 2018. 37(6).
- 30. Tohma, H., et al., Measurement of anticancer, antidiabetic and anticholinergic properties of sumac (Rhus coriaria): analysis of its phenolic compounds by LC–MS/MS. Journal of Food Measurement and Characterization, 2019. 13(2): p. 1607-1619.
- 31. Bogolitsyn, K., et al., Relationship between radical scavenging activity and polymolecular properties of brown algae polyphenols. Chemical Papers, 2019: p. 1-9.
- 32. Taslimi, P. and İ. Gulçin, Antioxidant and anticholinergic properties of olivetol. Journal of Food Biochemistry, 2018: p. e12516.
- 33. Yang, J., J. Guo, and J. Yuan, In vitro antioxidant properties of rutin. LWT-Food Science and Technology, 2008. 41(6): p. 1060-1066.
- 34. Calabro, M., et al., The rutin/β-cyclodextrin interactions in fully aqueous solution: spectroscopic studies and biological assays. Journal of pharmaceutical and biomedical analysis, 2005. 36(5): p. 1019-1027.
- 35. Khan, M.M., et al., Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotoxicity research, 2012. 22(1): p. 1-15.
- 36. Qian, Y., et al., New application of rutin: Repair the toxicity of emerging perfluoroalkyl substance to Pseudomonas stutzeri. Ecotoxicology and Environmental Safety, 2020. 201: p. 110879.