Research Article
BibTex RIS Cite

Discrimination of two species (Androctonus crassicauda and Leiurus abdullahbayrami; Buthidae Scorpions) by MALDI-TOF- MS-based PCA

Year 2022, Volume: 5 Issue: 3, 370 - 385, 15.12.2022
https://doi.org/10.38001/ijlsb.1077343

Abstract

Teh venoms of teh scorpions Androctonus crassicauda and Leuris abdullahbayrami, scorpion species each of teh two members of teh Buthidae family, were analyzed by MALDI–TOFMS in a mass range between 1 and 50 kDa. Interspecies differentiation was evaluated over peptide and protein molecules in dis mass range. Teh similarities and differences between two different scorpion species were revealed wif teh TEMPprincipal component analysis study, which was conducted wif spectral patterns including peptide and protein profiles. Teh similarity rate of teh LAB-123 and teh LAB460 scorpion venoms of teh same species was found as 66% while teh similarity rates of venoms of teh ACR species to teh LAB species ranged from zero to 37%. It was demonstrated dat scorpion venoms belonging to two different species from teh Buthadia family can be differentiated wif teh halp of dendrogram and gel profile, CCI color matrix, 3D or 2D-scattering profile, spectral mass loading data formed by peptide and protein spectral patterns of eleven scorpion venoms. It is anticipated dat dis approach, which was used for teh first time wif teh application of MALDI-TOFMS-based PCA analysis for teh differentiation of scorpion venoms, will be useful in differentiating venoms wif different spectral patterns.

References

  • [1] Rincón-Cortés, et.al., Structural and Functional Characterization of Toxic Peptides Purified from The Venom of The Colombian Scorpion Tityus Macrochirus. Toxicon, 2019. 169: p.5–11. https://doi.org/10.1016/j.toxicon.2019.07.013.
  • [2] Schaffrath, S.,and Predel, R.A., Simple Protocol for Venom Peptide Barcoding in Scorpions. EuPA Open Proteomics. 2014. 3: p. 239–245. https://doi.org/10.1016/j.euprot.2014.02.017.
  • [3] Oukkache, N. et.al., New Analysis of The Toxic Compounds from The Androctonus Mauretanicus Mauretanicus Scorpion Venom. Toxicon, 2008. 51: p. 835–852. https://doi.org/10.1016/j.toxicon.2007.12.012.
  • [4] Yağmur, E.A, Koç, H., and Kunt ,K.B., Description of A New Species of Leiurus Ehrenberg, 1828 (Scorpiones: Buthidae) from Southеastеrn Turkey. Euscorpius, 2009: p.1–20. https://doi.org/10.18590/euscorpius.2009.vol2009.iss85.1.
  • [5] Ozkan, O., and Alcigir, M.E., A Comparative Pathomorphological Findings between Leiurus abdullahbayrami and Androctonus crassicauda (Scorpion: Buthidae) envenomation in rabbit animal model. J. Arthropod. Borne Disease, 2019. 13: p. 104–115. https://doi.org/10.18502/jad.v13i1.937.
  • [6] Borges, A., and Rojas-Runjaic, F.J.M., Tityus Perijanensis González-Sponga (Scorpiones, Buthidae): Molecular Assessment of Its Geographical Distribution and Venom Lethality of Venezuelan Populations. Toxicon, 2007. 50: p. 1005–1010. https://doi.org/10.1016/j.toxicon.2007.07.019.
  • [7] Estrada-Gómez, S. et.al., MS/MS Analysis of Four Scorpion Venoms from Colombia: A descriptive approach. J. Venom. Anim. Toxins Incl. Tropical Disease, 2021. 27: p. 1–13. https://doi.org/10.1590/1678-9199-JVATITD-2020-0173.
  • [8] Bringans, S. et.al., Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics, 2008. 8: p. 1081–1096. https://doi.org/10.1002/pmic.200700948.
  • [9] Numanoğlu Çevik, Y. et.al., Salih, B. Identification of Snake Venoms According to their Protein Content Using the MALDI-TOF-MS Method. Anal. Chemistry Letters, 2021. 11: p. 153–167. https://doi.org/10.1080/22297928.2021.1894974.
  • [10] Martin-Eauclaire, M.F et.al., Achieving Automated Scorpion Venom Mass Fingerprinting (VMF) in The Nanogram Range. Toxicon, 2013. 69: p. 211–218. https://doi.org/10.1016/j.toxicon.2013.03.001.
  • [11] Favreau, P. et.al., Mass Spectrometry Strategies for Venom Mapping and Peptide Sequencing from Crude Venoms: Case Applications with Single Arthropod Specimen. Toxicon, 2006. 47: p. 676–687. https://doi.org/10.1016/j.toxicon.2006.01.020.
  • [12] Cheng, K. et.al., Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics - Clin. Application, 2016. 10(4): p. 346-357. https://doi.org/10.1002/prca.201500086.
  • [13] Taban, B.M., and Y. Numanoglu Cevik, The Efficiency of MALDI-TOF MS Method in Detecting Staphylococcus Aureus Isolated from Raw Milk and Artisanal Dairy Foods. CyTA-J. Food, 2021. 19: p. 739–750. https://doi.org/10.1080/19476337.2021.1977392.
  • [14] Sauget, M., et.al., Can MALDI-TOF Mass Spectrometry Reasonably Type Bacteria? Trends Microbiology, 2017. 25: p. 447–455. https://doi.org/10.1016/j.tim.2016.12.006.
  • [15] Smith, J.J, Jones, A., and Alewood, P.F., Mass Landscapes of Seven Scorpion Species: The First Analyses of Australian Species with 1,5-DAN matrix., J. Venom Research, 2012. 3: p. 7–14.
  • [16] Schaffrath, S. and Predel, R., A Simple Protocol for Venom Peptide Barcoding in Scorpions. EuPA Open Proteomics, 2014. 3: p. 239–245. https://doi.org/10.1016/j.euprot.2014.02.017.
  • [17] Jeong, Y.S., Lee, J., and Kim, S.J. Discrimination of Bacillus Anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/İonization Time-of-Flight Mass Spectrometry, Bull. Korean Chemical Society, 2013. 34: p. 2635–2639. https://doi.org/10.5012/bkcs.2013.34.9.2635.
  • [18] Samad, R.A, and Al Disi, Z., The Use of Principle Component Analysis and MALDI-TOF MS for The Differentiation of Mineral-Forming Virgibacillus and Bacillus Species Isolated from Sabkhas. R. Soc. Chemistry, 2020. 10: p. 14606–14616. https://doi.org/10.1039/d0ra01229g.
  • [19] Romi-Lebrun, R. et.al., Characterization of Four Toxins from Buthus Martensi Scorpion Venom, Which Act on Apamin-Sensitive Ca2+-Activated K+ Channels. Eur. J. Biochemistry, 1997. 245: p. 457–64. https://doi.org/10.1111/j.1432-1033.1997.00457.x.
  • [20] Caliskan, F. et.al., Characterization of Venom Components from The Scorpion Androctonus Crassicauda of Turkey: Peptides and genes. Toxicon, 2006. 48: p. 12–22. https://doi.org/10.1016/j.toxicon.2006.04.003.
Year 2022, Volume: 5 Issue: 3, 370 - 385, 15.12.2022
https://doi.org/10.38001/ijlsb.1077343

Abstract

References

  • [1] Rincón-Cortés, et.al., Structural and Functional Characterization of Toxic Peptides Purified from The Venom of The Colombian Scorpion Tityus Macrochirus. Toxicon, 2019. 169: p.5–11. https://doi.org/10.1016/j.toxicon.2019.07.013.
  • [2] Schaffrath, S.,and Predel, R.A., Simple Protocol for Venom Peptide Barcoding in Scorpions. EuPA Open Proteomics. 2014. 3: p. 239–245. https://doi.org/10.1016/j.euprot.2014.02.017.
  • [3] Oukkache, N. et.al., New Analysis of The Toxic Compounds from The Androctonus Mauretanicus Mauretanicus Scorpion Venom. Toxicon, 2008. 51: p. 835–852. https://doi.org/10.1016/j.toxicon.2007.12.012.
  • [4] Yağmur, E.A, Koç, H., and Kunt ,K.B., Description of A New Species of Leiurus Ehrenberg, 1828 (Scorpiones: Buthidae) from Southеastеrn Turkey. Euscorpius, 2009: p.1–20. https://doi.org/10.18590/euscorpius.2009.vol2009.iss85.1.
  • [5] Ozkan, O., and Alcigir, M.E., A Comparative Pathomorphological Findings between Leiurus abdullahbayrami and Androctonus crassicauda (Scorpion: Buthidae) envenomation in rabbit animal model. J. Arthropod. Borne Disease, 2019. 13: p. 104–115. https://doi.org/10.18502/jad.v13i1.937.
  • [6] Borges, A., and Rojas-Runjaic, F.J.M., Tityus Perijanensis González-Sponga (Scorpiones, Buthidae): Molecular Assessment of Its Geographical Distribution and Venom Lethality of Venezuelan Populations. Toxicon, 2007. 50: p. 1005–1010. https://doi.org/10.1016/j.toxicon.2007.07.019.
  • [7] Estrada-Gómez, S. et.al., MS/MS Analysis of Four Scorpion Venoms from Colombia: A descriptive approach. J. Venom. Anim. Toxins Incl. Tropical Disease, 2021. 27: p. 1–13. https://doi.org/10.1590/1678-9199-JVATITD-2020-0173.
  • [8] Bringans, S. et.al., Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics, 2008. 8: p. 1081–1096. https://doi.org/10.1002/pmic.200700948.
  • [9] Numanoğlu Çevik, Y. et.al., Salih, B. Identification of Snake Venoms According to their Protein Content Using the MALDI-TOF-MS Method. Anal. Chemistry Letters, 2021. 11: p. 153–167. https://doi.org/10.1080/22297928.2021.1894974.
  • [10] Martin-Eauclaire, M.F et.al., Achieving Automated Scorpion Venom Mass Fingerprinting (VMF) in The Nanogram Range. Toxicon, 2013. 69: p. 211–218. https://doi.org/10.1016/j.toxicon.2013.03.001.
  • [11] Favreau, P. et.al., Mass Spectrometry Strategies for Venom Mapping and Peptide Sequencing from Crude Venoms: Case Applications with Single Arthropod Specimen. Toxicon, 2006. 47: p. 676–687. https://doi.org/10.1016/j.toxicon.2006.01.020.
  • [12] Cheng, K. et.al., Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics - Clin. Application, 2016. 10(4): p. 346-357. https://doi.org/10.1002/prca.201500086.
  • [13] Taban, B.M., and Y. Numanoglu Cevik, The Efficiency of MALDI-TOF MS Method in Detecting Staphylococcus Aureus Isolated from Raw Milk and Artisanal Dairy Foods. CyTA-J. Food, 2021. 19: p. 739–750. https://doi.org/10.1080/19476337.2021.1977392.
  • [14] Sauget, M., et.al., Can MALDI-TOF Mass Spectrometry Reasonably Type Bacteria? Trends Microbiology, 2017. 25: p. 447–455. https://doi.org/10.1016/j.tim.2016.12.006.
  • [15] Smith, J.J, Jones, A., and Alewood, P.F., Mass Landscapes of Seven Scorpion Species: The First Analyses of Australian Species with 1,5-DAN matrix., J. Venom Research, 2012. 3: p. 7–14.
  • [16] Schaffrath, S. and Predel, R., A Simple Protocol for Venom Peptide Barcoding in Scorpions. EuPA Open Proteomics, 2014. 3: p. 239–245. https://doi.org/10.1016/j.euprot.2014.02.017.
  • [17] Jeong, Y.S., Lee, J., and Kim, S.J. Discrimination of Bacillus Anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/İonization Time-of-Flight Mass Spectrometry, Bull. Korean Chemical Society, 2013. 34: p. 2635–2639. https://doi.org/10.5012/bkcs.2013.34.9.2635.
  • [18] Samad, R.A, and Al Disi, Z., The Use of Principle Component Analysis and MALDI-TOF MS for The Differentiation of Mineral-Forming Virgibacillus and Bacillus Species Isolated from Sabkhas. R. Soc. Chemistry, 2020. 10: p. 14606–14616. https://doi.org/10.1039/d0ra01229g.
  • [19] Romi-Lebrun, R. et.al., Characterization of Four Toxins from Buthus Martensi Scorpion Venom, Which Act on Apamin-Sensitive Ca2+-Activated K+ Channels. Eur. J. Biochemistry, 1997. 245: p. 457–64. https://doi.org/10.1111/j.1432-1033.1997.00457.x.
  • [20] Caliskan, F. et.al., Characterization of Venom Components from The Scorpion Androctonus Crassicauda of Turkey: Peptides and genes. Toxicon, 2006. 48: p. 12–22. https://doi.org/10.1016/j.toxicon.2006.04.003.
There are 20 citations in total.

Details

Primary Language English
Subjects Microbiology
Journal Section Research Articles
Authors

Yasemin Numanoğlu Çevik 0000-0001-5818-7881

Mehmet Ali Kanat This is me 0000-0003-3494-4563

Early Pub Date May 14, 2022
Publication Date December 15, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

EndNote Numanoğlu Çevik Y, Kanat MA (December 1, 2022) Discrimination of two species (Androctonus crassicauda and Leiurus abdullahbayrami; Buthidae Scorpions) by MALDI-TOF- MS-based PCA. International Journal of Life Sciences and Biotechnology 5 3 370–385.



Follow us on social networks  19277 19276 20153  22366