Tarım Ekonomisi Verimliliği İçin İklim Değişikliği Parametrelerinin Makine Öğrenmesi Yöntemleriyle Tahmin Edilmesi
Year 2024,
Volume: 7 Issue: 3, 189 - 197
Abdullah Erdal Tümer
,
Esra Kabaklarlı
Abstract
İklim değişikliği, gıda ve su kaynaklarını kesintiye uğratarak dünya çapındaki ekonomileri tehdit ediyor ve mahsul verimini tahmin etmek için karmaşık istatistiksel modeller gerektiriyor. Tarıma büyük oranda bağımlı olan Türkiye'de, iklim değişikliğinin etkilerinin etkili politikalar yoluyla azaltılması için iklim değişkenliği ile kaynak kullanılabilirliği arasındaki karmaşık bağlantıların ekonomik analizlerine ihtiyaç duyulmaktadır. Meteorolojik verileri de içeren son tahmine dayalı modelleme, Türkiye'de aylık yağışların tahmin edilmesinin uygulanabilirliğini ortaya koymaktadır. Çalışma, yapay sinir ağları uygulanarak hassas yağış tahminleri için 1970'den 2021'e kadar aylık bağıl nem ve ortalama sıcaklık verilerinin kullanılmasının etkinliğini ortaya koyuyor. Araştırmanın sonuçlarının tarımsal üretimin artırılması açısından önemli sonuçları var. Aylık yağış tahminlerinin doğru olması, paydaşların tahıl mahsullerinin geliştirilmesi, tarım uygulamalarının iyileştirilmesi ve genel olarak sektör verimliliğinin artırılması konularında bilinçli kararlar almasına olanak tanır.
References
- 1. Jury, M.R., Economic impacts of climate variability in South Africa and development of resource prediction models. Journal of Applied Meteorology and Climatology, 2002. 41(1): p. 46-55.
- 2. Mızırak, Z. and A. Ceylan, 100. YILINDA TÜRKİYE’DEKİ TARIM POLİTİKALARININ YAPISAL DEĞİŞİMİ.
Necmettin Erbakan Üniversitesi Siyasal Bilgiler Fakültesi Dergisi. 5(Özel Sayı): p. 131-147.
- 3. ERDİNÇ, Z., TÜRKİYE'DE UYGULANAN TARIM POLİTİKALARININ YENİDEN YAPILANMASI. Anadolu
Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 2000. 16(1): p. 327-348.
- 4. Hisarlı, A., TARIM SEKTÖRÜNÜN EKONOMİK GELİŞMEYE ÜRÜN KATKISI. Anadolu Üniversitesi İktisadi ve İdari
Bilimler Fakültesi Dergisi, 1989. 7(2): p. 241-248.
- 5. Karakurt, H.U., et al., Evaluation of Differences of Fast and High Accuracy Base Calling Models of Guppy on Variant Calling Using Low Coverage WGS Data. International Journal of Life Sciences and Biotechnology, 2023. 6(3): p. 276-287.
- 6. AYNA, Ö.F. and Ş.F. ARSLANOĞLU, Anadolu coğrafyasında yayılış gösteren Berberis türleri ve geleneksel kullanımı. International Journal of Life Sciences and Biotechnology, 2019. 2(1): p. 36-42.
- 7. TUIK. Bitkisel Üretim İstatistikleri. 2021 [cited 11 Sebtember 2022 11 Sebtember 2022]; Available from:
https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249.
- 8. Rajula, H.S.R., et al., Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment. Medicina, 2020. 56(9): p. 455.
- 9. Neethirajan, S., The role of sensors, big data and machine learning in modern animal farming. Sensing and Bio-Sensing Research, 2020. 29: p. 100367.
- 10. Sharma, A., et al., Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 2020. 9: p. 4843-4873.
- 11. Tümer, A.E. and S. Koçer, Prediction of team league’s rankings in volleyball by artificial neural network method. International Journal of Performance Analysis in Sport, 2017. 17(3): p. 202-211.
- 12. Tümer, A.E. and A. Akkuş, Forecasting gross domestic product per capita using artificial neural networks with noneconomical parameters. Physica A: Statistical Mechanics and its Applications, 2018. 512: p. 468-473.
- 13. Usuga Cadavid, J.P., et al., Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. Journal of Intelligent Manufacturing, 2020. 31: p. 1531-1558.
- 14. Meteoroloji. 2023 [cited 13 September 2023 13 September 2023]; Available from: https://www.mgm.gov.tr/?il=Konya.
- 15. Poschen, P., Decent work, green jobs and the sustainable economy: Solutions for climate change and sustainable development. 2017: Routledge.
- 16. Olhoff, A., Emissions Gap Report 2021: The Heat Is On–A World of Climate Promises Not Yet Delivered. 2021.
- 17. Statista. Distribution of greenhouse gas emissions worldwide in 2020, by sector. 2020; Available from:
https://www.statista.com/statistics/241756/proportion-of-energy-in-global-greenhouse-gas-emissions.
- 18. Abdullahi, J. and G. Elkiran, Prediction of the future impact of climate change on reference evapotranspiration in Cyprus using artificial neural network. Procedia computer science, 2017. 120: p. 276-283.
- 19. Razmjooy, N. and V.V. Estrela, Applications of image processing and soft computing systems in agriculture. 2019: IGI Global.
20. Hu, A. and N. Razmjooy, Brain tumor diagnosis based on metaheuristics and deep learning. International Journal of Imaging Systems and Technology, 2021. 31(2): p. 657-669.
- 21. Khalil, A.J., et al., Energy efficiency prediction using artificial neural network. 2019.
- 22. Franco, G. and A.H. Sanstad, Climate change and electricity demand in California. Climatic Change, 2008. 87(Suppl 1): p. 139-151. 197
- 23. Guo, L.-N., et al., Prediction of the effects of climate change on hydroelectric generation, electricity demand, and emissions of greenhouse gases under climatic scenarios and optimized ANN model. Energy Reports, 2021. 7: p. 5431-5445.
- 24. Ahi, Y., et al., Reservoir evaporation forecasting based on climate change scenarios using artificial neural network model. Water Resources Management, 2023. 37(6): p. 2607-2624.
- 25. Ahmed, Z., et al., An overview of smart irrigation management for improving water productivity under climate change in drylands. Agronomy, 2023. 13(8): p. 2113.
- 26. Delgrange, N., et al., Neural networks for prediction of ultrafiltration transmembrane pressure–application to drinking water production. Journal of membrane science, 1998. 150(1): p. 111-123.
- 27. Tasdemir, S. and I.A. Ozkan, ANN approach for estimation of cow weight depending on photogrammetric body dimensions. International Journal of Engineering and Geosciences, 2019. 4(1): p. 36-44
Estimation of Climate Change Parameters for Agricultural Economy Efficiency with Machine Learning Methods
Year 2024,
Volume: 7 Issue: 3, 189 - 197
Abdullah Erdal Tümer
,
Esra Kabaklarlı
Abstract
Climate change threatens economies worldwide by disrupting food and water supplies, necessitating complex statistical models to forecast crop yields. Turkey, heavily reliant on agriculture, requires economic analyses of the intricate links between climate variability and resource availability to mitigate climate change impacts through effective policies. Recent predictive modeling incorporating meteorological data demonstrates the feasibility of anticipating monthly precipitation in Türkiye. The study demonstrates the effectiveness of using monthly relative humidity and average temperature data from 1970 to 2021 for precise precipitation predictions by applying artificial neural networks. The study's conclusions have important ramifications for raising agricultural output. Accurate monthly precipitation estimates enable stakeholders to make well-informed decisions on the development of grain crops, improving agricultural practices and raising sector productivity overall.
References
- 1. Jury, M.R., Economic impacts of climate variability in South Africa and development of resource prediction models. Journal of Applied Meteorology and Climatology, 2002. 41(1): p. 46-55.
- 2. Mızırak, Z. and A. Ceylan, 100. YILINDA TÜRKİYE’DEKİ TARIM POLİTİKALARININ YAPISAL DEĞİŞİMİ.
Necmettin Erbakan Üniversitesi Siyasal Bilgiler Fakültesi Dergisi. 5(Özel Sayı): p. 131-147.
- 3. ERDİNÇ, Z., TÜRKİYE'DE UYGULANAN TARIM POLİTİKALARININ YENİDEN YAPILANMASI. Anadolu
Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 2000. 16(1): p. 327-348.
- 4. Hisarlı, A., TARIM SEKTÖRÜNÜN EKONOMİK GELİŞMEYE ÜRÜN KATKISI. Anadolu Üniversitesi İktisadi ve İdari
Bilimler Fakültesi Dergisi, 1989. 7(2): p. 241-248.
- 5. Karakurt, H.U., et al., Evaluation of Differences of Fast and High Accuracy Base Calling Models of Guppy on Variant Calling Using Low Coverage WGS Data. International Journal of Life Sciences and Biotechnology, 2023. 6(3): p. 276-287.
- 6. AYNA, Ö.F. and Ş.F. ARSLANOĞLU, Anadolu coğrafyasında yayılış gösteren Berberis türleri ve geleneksel kullanımı. International Journal of Life Sciences and Biotechnology, 2019. 2(1): p. 36-42.
- 7. TUIK. Bitkisel Üretim İstatistikleri. 2021 [cited 11 Sebtember 2022 11 Sebtember 2022]; Available from:
https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249.
- 8. Rajula, H.S.R., et al., Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment. Medicina, 2020. 56(9): p. 455.
- 9. Neethirajan, S., The role of sensors, big data and machine learning in modern animal farming. Sensing and Bio-Sensing Research, 2020. 29: p. 100367.
- 10. Sharma, A., et al., Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 2020. 9: p. 4843-4873.
- 11. Tümer, A.E. and S. Koçer, Prediction of team league’s rankings in volleyball by artificial neural network method. International Journal of Performance Analysis in Sport, 2017. 17(3): p. 202-211.
- 12. Tümer, A.E. and A. Akkuş, Forecasting gross domestic product per capita using artificial neural networks with noneconomical parameters. Physica A: Statistical Mechanics and its Applications, 2018. 512: p. 468-473.
- 13. Usuga Cadavid, J.P., et al., Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. Journal of Intelligent Manufacturing, 2020. 31: p. 1531-1558.
- 14. Meteoroloji. 2023 [cited 13 September 2023 13 September 2023]; Available from: https://www.mgm.gov.tr/?il=Konya.
- 15. Poschen, P., Decent work, green jobs and the sustainable economy: Solutions for climate change and sustainable development. 2017: Routledge.
- 16. Olhoff, A., Emissions Gap Report 2021: The Heat Is On–A World of Climate Promises Not Yet Delivered. 2021.
- 17. Statista. Distribution of greenhouse gas emissions worldwide in 2020, by sector. 2020; Available from:
https://www.statista.com/statistics/241756/proportion-of-energy-in-global-greenhouse-gas-emissions.
- 18. Abdullahi, J. and G. Elkiran, Prediction of the future impact of climate change on reference evapotranspiration in Cyprus using artificial neural network. Procedia computer science, 2017. 120: p. 276-283.
- 19. Razmjooy, N. and V.V. Estrela, Applications of image processing and soft computing systems in agriculture. 2019: IGI Global.
20. Hu, A. and N. Razmjooy, Brain tumor diagnosis based on metaheuristics and deep learning. International Journal of Imaging Systems and Technology, 2021. 31(2): p. 657-669.
- 21. Khalil, A.J., et al., Energy efficiency prediction using artificial neural network. 2019.
- 22. Franco, G. and A.H. Sanstad, Climate change and electricity demand in California. Climatic Change, 2008. 87(Suppl 1): p. 139-151. 197
- 23. Guo, L.-N., et al., Prediction of the effects of climate change on hydroelectric generation, electricity demand, and emissions of greenhouse gases under climatic scenarios and optimized ANN model. Energy Reports, 2021. 7: p. 5431-5445.
- 24. Ahi, Y., et al., Reservoir evaporation forecasting based on climate change scenarios using artificial neural network model. Water Resources Management, 2023. 37(6): p. 2607-2624.
- 25. Ahmed, Z., et al., An overview of smart irrigation management for improving water productivity under climate change in drylands. Agronomy, 2023. 13(8): p. 2113.
- 26. Delgrange, N., et al., Neural networks for prediction of ultrafiltration transmembrane pressure–application to drinking water production. Journal of membrane science, 1998. 150(1): p. 111-123.
- 27. Tasdemir, S. and I.A. Ozkan, ANN approach for estimation of cow weight depending on photogrammetric body dimensions. International Journal of Engineering and Geosciences, 2019. 4(1): p. 36-44