Research Article
BibTex RIS Cite

Extraction and Comparison of Limonene Contents of Wastes in Citrus Species for Reuse

Year 2025, Volume: 8 Issue: 2, 85 - 93, 15.08.2025
https://doi.org/10.38001/ijlsb.1596068

Abstract

Identification and extraction of limonene in fruits of the genus Citrus L. which has several medicinal, cosmetic, and industrial properties, is crucial for reusing fruit wastes after they have been processed into fruit juice. The aims of the current study are therefore (i) to compare limonene contents in different fractions such as peels, pulps and juices of citrus species including orange (C. cinensis L.), lemon [C. limon (L.) Osbeck], grapefruit [C. paradisi (L.) Macfad.] and tangerine (C. tangerina Tanaka)), (ii) to extract limonene from the most abundant fraction of selected citrus species and (iii) to optimize the extraction parameters of supercritical fluid carbon dioxide (SFC) extraction system. The limonene contents were determined using high performance liquid chromatography (HPLC) and extraction conditions of SFC were optimized by Response Surface Methodology (RSM). The highest limonene content was determined in the peel fraction of the lemon. The limonene was found to be

Project Number

TÜBİTAK 1919B0121024

References

  • 1. García-Salas, P., et al., Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder. Food Chemistry, 2013. 141(2): p. 869–878. https://doi.org/10.1016/j.foodchem.2013.02.124 .
  • 2. FAOSTAT, FAOSTAT Database. Food and Agriculture Organization of the United Nations, 2024. Available at: https://www.fao.org/faostat/en/#data/QCL. (Accessed: 15 Nov. 2024).
  • 3. Wilkins, M. R., et al., Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World Journal of Microbiology and Biotechnology, 2007b. 23(8): p. 1161–1168. https://doi.org/10.1007/s11274-007-9346-2
  • 4. Siddiqui, S. A., et al., Extraction and purification of d-limonene from orange peel wastes: Recent advances, Industrial Crops and Products, 2022. 177, 114484. https://doi.org/10.1016/j.indcrop.2021.114484
  • 5. Zhang, E., et al., Bio-inspired design of hierarchical PDMS microstructures with tunable adhesive superhydrophobicity, Nanoscale, 2015. 7(14): p. 6151–6158. https://doi.org/10.1039/c5nr00356c.
  • 6. Lane, A. G, Removal of peel oil from citrus peel press liquors before anaerobic digestion. Environmental Technology Letters, 1983. 4(2): p. 65–72. https://doi.org/10.1080/09593338309384174.
  • 7. Ruiz, B., and X. Flotats, Citrus essential oils and their influence on the anaerobic digestion process: An overview, Waste Management, 2014. 34(11): p. 2063–2079. https://doi.org/10.1016/j.wasman.2014.06.026.
  • 8. Pourbafrani, M., et al., Production of biofuels, limonene and pectin from citrus wastes, Bioresource Technology, 2010. 101(11): p. 4246–4250. https://doi.org/10.1016/j.biortech.2010.01.077
  • 9. Morehouse, B. R., et al., Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis. Biochemistry, 2017. 56(12): p. 1706–1715. https://doi.org/10.1021/acs.biochem.7b00143.
  • 10. PubChem, PubChem Compound Summary for CID 22311, Limonene. National Library of Medicine (US), National Center for Biotechnology Information, 2024. (Accessed: 13 Nov. 2024).
  • 11. Kim, Y.W., et al., Safety evaluation and risk assessment of d-Limonene, Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 2013. 16(1): p. 17–38. https://doi.org/10.1080/10937404.2013.769418.
  • 12. Bevilacqua, A., Corbo, M.R., and M. Sinigaglia, In vitro evaluation of the antimicrobial activity of eugenol, limonene, and citrus extract against bacteria and yeasts, representative of the spoiling microflora of fruit juices, Journal of Food Protection, 2010. 73(5): p. 888–894. https://doi.org/10.4315/0362- 028x-73.5.888.
  • 13. Cai, R., et al., Antifungal activity and mechanism of citral, limonene, and eugenol against Zygosaccharomyces rouxii, LWT - Food Science and Technology, 2019. 106: p. 50–56. https://doi.org/10.1016/j.lwt.2019.02.059.
  • 14. Hollingsworth, R.G., and J.W. Armstrong, Potential of temperature-controlled atmospheres, and ozone fumigation to control thrips and mealybugs on ornamental plants for export, Journal of Economic Entomology, 2005. 98(2): p. 289–298. https://doi.org/10.1603/0022-0493-98.2.289.
  • 15. Miller, J., et al., D-Limonene: A bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment, Oncology Reviews, 2011. 5: p. 31–42. https://doi.org/10.1007/s12156-010-0066-8.
  • 16. Kamyab Moghadas, B., et al., Experimental study of Dorema aucheri extraction with supercritical carbon dioxide. Asian Journal of Chemistry, 2012. 24: p. 3691–3694. DOI: Not available.
  • 17. El-Deen, A.K., and Shimizu, K., Application of D-Limonene as a bio-based solvent in low-density dispersive liquid–liquid microextraction of acidic drugs from aqueous samples. Analytical Sciences, 2019. 35(12): p. 1385–1391. https://doi.org/10.2116/analsci.19P360.
  • 18. Auta, M., et al., Optimization of citrus peel D-limonene extraction using solvent-free microwave green technology. Chemical Engineering Communications, 2018. 205(6): p. 789–796. https://doi.org/10.1080/00986445.2017.1419206.
  • 19. Lopresto, C.G., et al., A non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction. Separation and Purification Technology, 2014. 137: p. 13–20. https://doi.org/10.1016/j.seppur.2014.09.015.
  • 20. Bourgou, S., et al., Changes of peel essential oil composition of four Tunisian citrus during fruit maturation. The Scientific World Journal, 2012. Article ID 528593. https://doi.org/10.1100/2012/528593.
  • 21. Ibrahim, M., and S. El-Sawi, Quality and quantity of volatile oil resulting from the recycling of different forms of orange peel using drying methods. Journal of Materials and Environmental Science, 2019. 10(7): p. 598–603. DOI: Not available.
  • 22. Feger, W., Brandauer, H., and H. Ziegler, Analytical investigation of Murcott (honey) tangerine peel oil. Journal of Essential Oil Research, 2003. 15(3): p. 143–147. https://doi.org/10.1080/10412905.2003.9712097.
  • 23. Kamal, G., et al., Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. International Food Research Journal, 2011. 18(4): p. 1275–1282. DOI: Not available.
  • 24. Jha, P., et al., Valorisation of orange peel: supplement in fermentation media for ethanol production and source of limonene. Environmental Sustainability, 2019. 2: p. 33–41. https://doi.org/10.1007/s42398-019-00048-2.
  • 25. Owolabi, M.S., et al., Chemical composition of Citrus limon (L.) Osbeck growing in Southwestern Nigeria: Essential oil chemotypes of both peel and leaf of lemon. American Journal of Essential Oils and Natural Products, 2018. 6: p. 36–40. DOI: Not available.
  • 26. Hakim, I.A., McClure, T., and D. Liebler, Assessing dietary D-Limonene intake for epidemiological studies. Journal of Food Composition and Analysis, 2000. 13(4): p. 329–336. https://doi.org/10.1006/jfca.1999.0862.
  • 27. Lopresto, C., et al., non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction. Separation and Purification Technology, 2014. 137: p. 13–20. https://doi.org/10.1016/j.seppur.2014.09.015.
  • 28. Viuda-Martos, M., et al., Chemical composition of mandarin (C. reticulata L.), grapefruit (C. paradisi L.), lemon (C. limon L.), and orange (C. sinensis L.) essential oils. Journal of Essential Oil Bearing Plants, 2009. 12(2): p. 236–243. https://doi.org/10.1080/0972060X.2009.10643716.
  • 29. Costa, S.S., et al., Microwave extraction of mint essential oil – Temperature calibration for the oven. Journal of Food Engineering, 2014. 126: p. 1–6. https://doi.org/10.1016/j.jfoodeng.2013.10.002.
  • 30. Azmir, J., et al., Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 2013. 117(4): p. 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014.
  • 31. Lopresto, C.G., et al., Process-intensified waste valorization and environmentally friendly d-limonene extraction. Euro-Mediterranean Journal for Environmental Integration, 2019. 4: p. 31. https://doi.org/10.1007/s41207-019-0115-1.
  • 32. Kirbaşlar, Ş.I., Boz, I., and F.G. Kirbaşlar, Composition of Turkish lemon and grapefruit peel oils. Journal of Essential Oil Research, 2006. 18(5): p. 525–543. https://doi.org/10.1080/10412905.2006.9699161.
  • 33. Ammad, F., et al., The potency of lemon (Citrus limon L.) essential oil to control some fungal diseases of grapevine wood. Comptes Rendus Biologies, 2018. 341(2): p. 97–101. https://doi.org/10.1016/j.crvi.2018.01.002.
  • 34. Mikšovsky, P., and E.N. Horn, Continuous formation of limonene carbonates in supercritical carbon dioxide. Organic Process Research & Development, 2022. 26(10): p. 2799–2810. https://doi.org/10.1021/acs.oprd.2c00143.
  • 35. Yasumoto, S., et al., Supercritical CO₂-mediated countercurrent separation of essential oil and seed oil. The Journal of Supercritical Fluids, 2015. 104: p. 104–111. https://doi.org/10.1016/j.supflu.2015.06.003.
  • 36. Romano, R., et al., Pizzolongo, F., and P. Masi, Bioactive compounds extracted by liquid and supercritical carbon dioxide from citrus peels. International Journal of Food Science & Technology, 2022. 57(6): p. 3826–3837. https://doi.org/10.1111/ijfs.15591.

Narenciye Türlerindeki Atıkların Limonen İçeriklerinin Yeniden Kullanım Amaçlı Ekstraksiyonu ve Karşılaştırılması

Year 2025, Volume: 8 Issue: 2, 85 - 93, 15.08.2025
https://doi.org/10.38001/ijlsb.1596068

Abstract

Citrus L. cinsine ait meyvelerde bulunan ve çeşitli tıbbi, kozmetik ve endüstriyel özelliklere sahip olan limonenin tanımlanması ve ekstraksiyonu, meyve sularına dönüştürüldükten sonra meyve atıklarının yeniden kullanımı açısından büyük önem taşımaktadır. Bu çalışmanın amaçları ise şunlardır: (i) portakal (C. sinensis L.), limon [C. limon (L.) Osbeck], greyfurt [C. paradisi (L.) Macfad.] ve mandalina (C. tangerina Tanaka) gibi turunçgil türlerinin kabuk, posa ve meyve suyu gibi farklı fraksiyonlarındaki limonen içeriklerini karşılaştırmak, (ii) seçilen turunçgil türlerinin en bol bulunan fraksiyonlarından limoneni ekstrakte etmek ve (iii) süperkritik sıvı karbondioksit (SFC) ekstraksiyon sisteminin parametrelerini optimize etmektir. Limonen içerikleri yüksek performanslı sıvı kromatografisi (HPLC) kullanılarak belirlenmiş ve SFC ekstraksiyon koşulları Yüzey Yanıt Metodolojisi (RSM) ile optimize edilmiştir. En yüksek limonen içeriği limonun kabuk fraksiyonunda tespit edilmiştir. Test edilen tüm meyve sularında limonen içeriği

Project Number

TÜBİTAK 1919B0121024

References

  • 1. García-Salas, P., et al., Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder. Food Chemistry, 2013. 141(2): p. 869–878. https://doi.org/10.1016/j.foodchem.2013.02.124 .
  • 2. FAOSTAT, FAOSTAT Database. Food and Agriculture Organization of the United Nations, 2024. Available at: https://www.fao.org/faostat/en/#data/QCL. (Accessed: 15 Nov. 2024).
  • 3. Wilkins, M. R., et al., Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World Journal of Microbiology and Biotechnology, 2007b. 23(8): p. 1161–1168. https://doi.org/10.1007/s11274-007-9346-2
  • 4. Siddiqui, S. A., et al., Extraction and purification of d-limonene from orange peel wastes: Recent advances, Industrial Crops and Products, 2022. 177, 114484. https://doi.org/10.1016/j.indcrop.2021.114484
  • 5. Zhang, E., et al., Bio-inspired design of hierarchical PDMS microstructures with tunable adhesive superhydrophobicity, Nanoscale, 2015. 7(14): p. 6151–6158. https://doi.org/10.1039/c5nr00356c.
  • 6. Lane, A. G, Removal of peel oil from citrus peel press liquors before anaerobic digestion. Environmental Technology Letters, 1983. 4(2): p. 65–72. https://doi.org/10.1080/09593338309384174.
  • 7. Ruiz, B., and X. Flotats, Citrus essential oils and their influence on the anaerobic digestion process: An overview, Waste Management, 2014. 34(11): p. 2063–2079. https://doi.org/10.1016/j.wasman.2014.06.026.
  • 8. Pourbafrani, M., et al., Production of biofuels, limonene and pectin from citrus wastes, Bioresource Technology, 2010. 101(11): p. 4246–4250. https://doi.org/10.1016/j.biortech.2010.01.077
  • 9. Morehouse, B. R., et al., Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis. Biochemistry, 2017. 56(12): p. 1706–1715. https://doi.org/10.1021/acs.biochem.7b00143.
  • 10. PubChem, PubChem Compound Summary for CID 22311, Limonene. National Library of Medicine (US), National Center for Biotechnology Information, 2024. (Accessed: 13 Nov. 2024).
  • 11. Kim, Y.W., et al., Safety evaluation and risk assessment of d-Limonene, Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 2013. 16(1): p. 17–38. https://doi.org/10.1080/10937404.2013.769418.
  • 12. Bevilacqua, A., Corbo, M.R., and M. Sinigaglia, In vitro evaluation of the antimicrobial activity of eugenol, limonene, and citrus extract against bacteria and yeasts, representative of the spoiling microflora of fruit juices, Journal of Food Protection, 2010. 73(5): p. 888–894. https://doi.org/10.4315/0362- 028x-73.5.888.
  • 13. Cai, R., et al., Antifungal activity and mechanism of citral, limonene, and eugenol against Zygosaccharomyces rouxii, LWT - Food Science and Technology, 2019. 106: p. 50–56. https://doi.org/10.1016/j.lwt.2019.02.059.
  • 14. Hollingsworth, R.G., and J.W. Armstrong, Potential of temperature-controlled atmospheres, and ozone fumigation to control thrips and mealybugs on ornamental plants for export, Journal of Economic Entomology, 2005. 98(2): p. 289–298. https://doi.org/10.1603/0022-0493-98.2.289.
  • 15. Miller, J., et al., D-Limonene: A bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment, Oncology Reviews, 2011. 5: p. 31–42. https://doi.org/10.1007/s12156-010-0066-8.
  • 16. Kamyab Moghadas, B., et al., Experimental study of Dorema aucheri extraction with supercritical carbon dioxide. Asian Journal of Chemistry, 2012. 24: p. 3691–3694. DOI: Not available.
  • 17. El-Deen, A.K., and Shimizu, K., Application of D-Limonene as a bio-based solvent in low-density dispersive liquid–liquid microextraction of acidic drugs from aqueous samples. Analytical Sciences, 2019. 35(12): p. 1385–1391. https://doi.org/10.2116/analsci.19P360.
  • 18. Auta, M., et al., Optimization of citrus peel D-limonene extraction using solvent-free microwave green technology. Chemical Engineering Communications, 2018. 205(6): p. 789–796. https://doi.org/10.1080/00986445.2017.1419206.
  • 19. Lopresto, C.G., et al., A non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction. Separation and Purification Technology, 2014. 137: p. 13–20. https://doi.org/10.1016/j.seppur.2014.09.015.
  • 20. Bourgou, S., et al., Changes of peel essential oil composition of four Tunisian citrus during fruit maturation. The Scientific World Journal, 2012. Article ID 528593. https://doi.org/10.1100/2012/528593.
  • 21. Ibrahim, M., and S. El-Sawi, Quality and quantity of volatile oil resulting from the recycling of different forms of orange peel using drying methods. Journal of Materials and Environmental Science, 2019. 10(7): p. 598–603. DOI: Not available.
  • 22. Feger, W., Brandauer, H., and H. Ziegler, Analytical investigation of Murcott (honey) tangerine peel oil. Journal of Essential Oil Research, 2003. 15(3): p. 143–147. https://doi.org/10.1080/10412905.2003.9712097.
  • 23. Kamal, G., et al., Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. International Food Research Journal, 2011. 18(4): p. 1275–1282. DOI: Not available.
  • 24. Jha, P., et al., Valorisation of orange peel: supplement in fermentation media for ethanol production and source of limonene. Environmental Sustainability, 2019. 2: p. 33–41. https://doi.org/10.1007/s42398-019-00048-2.
  • 25. Owolabi, M.S., et al., Chemical composition of Citrus limon (L.) Osbeck growing in Southwestern Nigeria: Essential oil chemotypes of both peel and leaf of lemon. American Journal of Essential Oils and Natural Products, 2018. 6: p. 36–40. DOI: Not available.
  • 26. Hakim, I.A., McClure, T., and D. Liebler, Assessing dietary D-Limonene intake for epidemiological studies. Journal of Food Composition and Analysis, 2000. 13(4): p. 329–336. https://doi.org/10.1006/jfca.1999.0862.
  • 27. Lopresto, C., et al., non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction. Separation and Purification Technology, 2014. 137: p. 13–20. https://doi.org/10.1016/j.seppur.2014.09.015.
  • 28. Viuda-Martos, M., et al., Chemical composition of mandarin (C. reticulata L.), grapefruit (C. paradisi L.), lemon (C. limon L.), and orange (C. sinensis L.) essential oils. Journal of Essential Oil Bearing Plants, 2009. 12(2): p. 236–243. https://doi.org/10.1080/0972060X.2009.10643716.
  • 29. Costa, S.S., et al., Microwave extraction of mint essential oil – Temperature calibration for the oven. Journal of Food Engineering, 2014. 126: p. 1–6. https://doi.org/10.1016/j.jfoodeng.2013.10.002.
  • 30. Azmir, J., et al., Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 2013. 117(4): p. 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014.
  • 31. Lopresto, C.G., et al., Process-intensified waste valorization and environmentally friendly d-limonene extraction. Euro-Mediterranean Journal for Environmental Integration, 2019. 4: p. 31. https://doi.org/10.1007/s41207-019-0115-1.
  • 32. Kirbaşlar, Ş.I., Boz, I., and F.G. Kirbaşlar, Composition of Turkish lemon and grapefruit peel oils. Journal of Essential Oil Research, 2006. 18(5): p. 525–543. https://doi.org/10.1080/10412905.2006.9699161.
  • 33. Ammad, F., et al., The potency of lemon (Citrus limon L.) essential oil to control some fungal diseases of grapevine wood. Comptes Rendus Biologies, 2018. 341(2): p. 97–101. https://doi.org/10.1016/j.crvi.2018.01.002.
  • 34. Mikšovsky, P., and E.N. Horn, Continuous formation of limonene carbonates in supercritical carbon dioxide. Organic Process Research & Development, 2022. 26(10): p. 2799–2810. https://doi.org/10.1021/acs.oprd.2c00143.
  • 35. Yasumoto, S., et al., Supercritical CO₂-mediated countercurrent separation of essential oil and seed oil. The Journal of Supercritical Fluids, 2015. 104: p. 104–111. https://doi.org/10.1016/j.supflu.2015.06.003.
  • 36. Romano, R., et al., Pizzolongo, F., and P. Masi, Bioactive compounds extracted by liquid and supercritical carbon dioxide from citrus peels. International Journal of Food Science & Technology, 2022. 57(6): p. 3826–3837. https://doi.org/10.1111/ijfs.15591.
There are 36 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology
Journal Section Research Articles
Authors

Tuğba Pelin Toker 0000-0002-9304-5739

Mariem Bouali 0000-0003-2025-8116

Mustafa Hamza Mawlood Al Bayatı 0000-0003-4939-3186

Mehmet Fatih Cengiz 0000-0002-6836-2708

Project Number TÜBİTAK 1919B0121024
Early Pub Date August 15, 2025
Publication Date August 15, 2025
Submission Date December 4, 2024
Acceptance Date January 15, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

EndNote Toker TP, Bouali M, Al Bayatı MHM, Cengiz MF (August 1, 2025) Extraction and Comparison of Limonene Contents of Wastes in Citrus Species for Reuse. International Journal of Life Sciences and Biotechnology 8 2 85–93.



Follow us on social networks  19277 19276 20153  22366