Research Article
BibTex RIS Cite

Investigation of the Effect of Different Colors of LED Light on Vegetative Growth in Radish Micro Sprouts

Year 2025, Volume: 8 Issue: 2, 123 - 132, 15.08.2025
https://doi.org/10.38001/ijlsb.1681003

Abstract

In recent years, the commercial production of various plant species and microgreen varieties has rapidly expanded. This study aimed to investigate the effects of different LED light spectra on the vegetative growth of radish microgreens, a commonly used species in microgreen production, across different color segments (red, white, and black). The influence of LED light colors (white, blue, red, and purple) on morphological characteristics such as biomass, hypocotyl length, diameter, and coloration were quantitatively analyzed. Results showed that red light promoted the greatest hypocotyl elongation, with measurements 60% longer than under white light, 50% longer than under blue light, and 40% longer than under purple light. The highest hypocotyl length was recorded under red light at 10.51 cm. Hypocotyl diameter was greatest under purple light. Biomass analysis revealed that white light was the most effective spectrum in promoting plant biomass. For example, the dry weight of white radishes under white light was 0.54 g, followed by 0.49 g under red light, 0.42 g under blue light, and 0.37 g under purple light. In conclusion, red light had the strongest effect on hypocotyl elongation, while purple light was most effective in increasing diameter. White light, on the other hand, was most efficient in promoting overall biomass accumulation. These findings offer valuable insights for optimizing LED light use in the production of radish microgreens, contributing to more efficient and targeted growing strategies in controlled environments.

Ethical Statement

The study is proper with ethical standards.

Thanks

This study was carried out with the infrastructure and technical support provided by the Samsun Seed Certification and Testing Directorate Germination Laboratory. The experimental analyses were conducted in the Physiology Laboratory of the Department of Horticulture, Faculty of Agriculture, Ondokuz Mayıs University. We extend our gratitude to all institutions that contributed to the project.

References

  • 1. Atasoy, S. and A. Balkaya, Sebze türlerinin çimlendirilmiş tohum ve mikro filiz olarak değerlendirilmesi, Sebze tohum üretimi ve teknolojisinde güncel ve yenilikçi uygulamalar, A. Balkaya and L. Arın, Editors. 2024, İksad Yayıncılık. Türkiye. p. 91–118.
  • 2. Tuncer, B., Sebze mikroyeşillikleri: Brassicaceae familyası türleri, Ziraat, Orman ve Su Ürünlerinde Güncel Araştırmalar, T. Akar, İ. Daşdemir, and İ. Cengizler, Editors. 2022, Gece Kitaplığı. Türkiye. p. 65–88.
  • 3. Delian, E., et al., Insights into microgreens physiology. Scientific Papers. Series B, Horticulture, 2015. 59: p. 447–454.
  • 4. Xiao, Z., et al., Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. Journal of Agricultural and Food Chemistry, 2012. 60: p. 7644–7651.
  • 5. Çolak, C., Mikro yeşillikler (microgreens) nedir? Bebek yeşillikler ve sebze filizlerinden farkı nedir? Evrim Ağacı, 2020. Erişim Adresi: https://evrimagaci.org/mikro-yesillikler-microgreens-nedir-bebek-yesillikler-ve-sebze-filizlerinden-farki-nedir-8825
  • 6. Işık, S., et al., Mikroyeşillikler: Besinsel içeriği, sağlık üzerine etkisi, üretimi ve gıda güvenliği. Gıda, 2022. 47(4): p. 630–649.
  • 7. Di Gioia, F., C. Mininni, and P. Santamaria, Come coltivare microortaggi, Microgreens, F. Di Gioia and P. Santamaria, Editors. 2015, ECO-logica. Italy. p. 51–80.
  • 8. Lobiuc, A., et al., Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules, 2017. 22(12): p. 2111.
  • 9. Kyriacou, M.C., et al., Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chemistry, 2019. 277: p. 107–118.
  • 10. Kyriacou, M.C., et al., Micro-scale vegetable production and the rise of microgreens. Trends in Food Science & Technology, 2016. 57: p. 103–115.
  • 11. Anonim, Microgreens market. 2023, Straits Research. [Erişim Tarihi: 14 Ekim 2023]
  • 12. Arın, L., et al., Bazı lahanagil (Cruciferae) ve baklagil (Fabaceae) türlerinin tohum filizlerindeki kimyasal özelliklerin değişimi ve beslenme değeri. Journal of Agricultural Sciences, 2014. 20(3): s. 230–238.
  • 13. Orhun, G.E., and A. Levent, Determining the best sprouting conditions for germination of radish (Raphanus sativus) seeds consumed as vegetables. Journal of Food, Agriculture & Environment, 2008. 6(1): p. 123–127.
  • 14. Brazaityte, A., et al., Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens. International Agrophysics, 2015. 29(1): p. 13–22.
  • 15. Murchie, E.H., and K.K. Niyogi, Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology, 2011. 155(1): p. 86–92.
  • 16. Karaağaç, O., et al., Bazı yerel çeşitlere ait tohumların mikrofiliz olarak üretim potansiyellerinin ortaya konulması, yetiştirme koşullarının optimizasyonu ve besin içeriklerinin belirlenmesi. BÜGEM Projesi, 2022.
  • 17. Demir, K., G. Sarıkamış, and G.Ç. Seyrek, Effect of LED lights on the growth, nutritional quality and glucosinolate content of broccoli, cabbage and radish microgreens. Food Chemistry, 2023. 401: p. 134088.
  • 18. International Seed Testing Association, ISTA rules: International rules for seed testing. 2021.
  • 19. Batu, A., et al., Minolta ve Hunter renk ölçüm aletleri ile domates, elma ve muzun renk değerlerinin karşılaştırılması. Gıda, 1997. 22(4): p. 301–307.
  • 20. Acar, K., Fluoresans Renkler İçeren Boyama Reçetesi Tahmin Algoritmalarında Başarının Artırılmasına Yönelik Yeni Bir Yöntem. Doktora Tezi. 2009, Marmara Üniversitesi, Fen Bilimleri Enstitüsü: İstanbul.
  • 21. Bağcı, A., Soğan (Allium cepa L.) Genetik Kaynaklarının Morfolojik ve Moleküler Karakterizasyonu. Yüksek Lisans Tezi. 2023, Ondokuz Mayıs Üniversitesi, Lisansüstü Eğitim Enstitüsü: Samsun.
  • 22. Kim, J., H.S. Lee, and S. Park, Biomass accumulation under different light environments. Journal of Plant Growth Regulation, 2015. 62(1): p. 45–52.
  • 23. Kandemir, D., et al., Lahanagiller familyasına ait bazı sebze türlerinin vejetatif büyüme özelliklerinin incelenmesi. Black Sea Journal of Engineering and Science, 2023. 6(4): p. 624–632.
  • 24. Samuoliene, G., et al., LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chemistry, 2012. 134(3): p. 1494–1499.
  • 25. Zhang, X., et al., A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends in Food Science & Technology, 2020. 99: p. 193–204.
  • 26. Jones-Baumgardt, et al., The growth and morphology of microgreens is associated with modified ascorbate and anthocyanin profiles in response to the intensity of sole-source light-emitting diodes. Canadian Journal of Plant Science, 2021. 101(2): p. 212–228.
  • 27. Tuan, P.A., et al., Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.). Journal of Agricultural and Food Chemistry, 2013. 61(50): p. 12356–12361.
  • 28. Choe, U., L.L. Yu, and T.T. Wang, The science behind microgreens as an exciting new food for the 21st century. Journal of Agricultural and Food Chemistry, 2018. 66(44): p. 11519–11530.
  • 29. Kurina, A.B., et al., Genetic diversity of phenotypic and biochemical traits in VIR radish (Raphanus sativus L.) germplasm collection. Plants, 2021. 10(9): p. 1799.
  • 30. Garegnani, M., et al., Non-destructive real-time analysis of plant metabolite accumulation in radish microgreens under different LED light recipes. Frontiers in Plant Science, 2024. 14: p. 1289208.
  • 31. Zha, L., and W. Liu, Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LEDs. Horticulture, Environment and Biotechnology, 2018. 59: p. 511–518.
  • 32. Kong, Y., and Y. Zheng, Phototropin is partly involved in blue-light-mediated stem elongation, flower initiation, and leaf expansion: A comparison of phenotypic responses between wild Arabidopsis and its phototropin mutants. Environmental and Experimental Botany, 2020. 171: p. 103967.
  • 33. Brazaityte, A., et al., Effect of different ratios of blue and red LED light on Brassicaceae microgreens under a controlled environment. Plants, 2021. 10(4): p. 801.
  • 34. Yorio, N.C., et al., Improving spinach, radish, and lettuce growth under red LEDs with blue light supplementation. HortScience, 2001. 36: p. 380–383.
  • 35. Pennisi, G., et al., Modelling environmental burdens of indoor-grown vegetables and herbs as affected by red and blue LED lighting. Sustainability, 2019. 11(15): p. 4063.
  • 36. Kopsell, D.A., et al., Shoot tissue pigment levels increase in ‘Florida Broadleaf’ mustard (Brassica juncea L.) microgreens following high light treatment. Scientia Horticulturae, 2012. 140: p. 96–99.
  • 37. Liu, H., et al., The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. Journal of Functional Foods, 2016. 25: p. 459–465.
  • 38. Fahey, J.W., Y. Zhang, and P. Talalay, Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences, 1997. 94(19): p. 10367–10372.
  • 39. Xiao, Z., et al., Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. Journal of Food Composition and Analysis, 2016. 49: p. 87–93.

Farklı Renklerde LED Işıklarının Turp Mikro Filizlerinde Vejetatif Büyüme Üzerine Etkisinin İncelenmesi

Year 2025, Volume: 8 Issue: 2, 123 - 132, 15.08.2025
https://doi.org/10.38001/ijlsb.1681003

Abstract

Son yıllarda birçok farklı bitki türü ve çeşitte mikro filiz ticari üretimi hızla yaygınlaşmaktadır. Bu araştırmada, mikro filiz üretiminde yaygın kullanılan turp bitkisinde, farklı ürün segmentlerinde (kırmızı, beyaz ve siyah) farklı renklerde LED ışık spektrumlarının vejetatif büyüme üzerindeki etkisinin kantitatif analizlerle incelenmesi amaçlanmıştır. Çalışmada, farklı LED ışık renklerinin (beyaz, mavi, kırmızı ve mor) turp mikro filizlerinin biyokütlesi, hipokotil boyu, çapı ve renklenme gibi morfolojik özellikleri üzerindeki etkileri değerlendirilmiştir. Araştırma sonuçlarına göre kırmızı ışık, hipokotil boyu açısından en fazla büyümeyi sağlamıştır. Kırmızı ışıkta ölçülen hipokotil boyu, beyaz ışığa göre %60, mavi ışığa göre %50 ve mor ışığa göre %40 daha uzun olmuştur. En yüksek hipokotil boyu, 10.51 cm ile kırmızı ışıkta ölçülmüştür. Hipokotil çapı yönünden en yüksek değer mor ışıkta belirlenmiştir. Biyokütle analiz sonuçlarına göre, beyaz ışık bitkilerin biyokütlesini artırmada en etkili ışık kaynağı olmuştur. Beyaz ışıkta beyaz turpların kuru ağırlığı 0.54 g olarak belirlenirken, bu değer sırasıyla kırmızı ışıkta 0.49 g, mavi ışıkta 0.42 g ve mor ışıkta 0.37 g olarak ölçülmüştür. Sonuç olarak, kırmızı ışığın hipokotil boyu ve biyokütle artışı açısından en yüksek etkiye sahip olduğu, mor ışığın ise hipokotil çapını en çok artıran ışık kaynağı olduğu belirlenmiştir. Beyaz ışık ise biyokütle artışını en çok teşvik eden spektrum olarak saptanmıştır. Bu bulgular, LED ışıklarının turp mikro filiz üretiminde verimli kullanımına yönelik önemli bilgiler sunmaktadır.

Ethical Statement

Çalışma etik standartlara uygundur.

Thanks

Bu çalışma, Samsun Tohum Sertifikasyon ve Test Müdürlüğü Çimlendirme Laboratuvarı’nın sağladığı altyapı ve teknik destekle yürütülmüştür. Deneysel analizler, Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü Fizyoloji Laboratuvarı ortamında gerçekleştirilmiştir. Çalışmaya katkıda bulunan tüm kurumlara teşekkür ederiz.

References

  • 1. Atasoy, S. and A. Balkaya, Sebze türlerinin çimlendirilmiş tohum ve mikro filiz olarak değerlendirilmesi, Sebze tohum üretimi ve teknolojisinde güncel ve yenilikçi uygulamalar, A. Balkaya and L. Arın, Editors. 2024, İksad Yayıncılık. Türkiye. p. 91–118.
  • 2. Tuncer, B., Sebze mikroyeşillikleri: Brassicaceae familyası türleri, Ziraat, Orman ve Su Ürünlerinde Güncel Araştırmalar, T. Akar, İ. Daşdemir, and İ. Cengizler, Editors. 2022, Gece Kitaplığı. Türkiye. p. 65–88.
  • 3. Delian, E., et al., Insights into microgreens physiology. Scientific Papers. Series B, Horticulture, 2015. 59: p. 447–454.
  • 4. Xiao, Z., et al., Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. Journal of Agricultural and Food Chemistry, 2012. 60: p. 7644–7651.
  • 5. Çolak, C., Mikro yeşillikler (microgreens) nedir? Bebek yeşillikler ve sebze filizlerinden farkı nedir? Evrim Ağacı, 2020. Erişim Adresi: https://evrimagaci.org/mikro-yesillikler-microgreens-nedir-bebek-yesillikler-ve-sebze-filizlerinden-farki-nedir-8825
  • 6. Işık, S., et al., Mikroyeşillikler: Besinsel içeriği, sağlık üzerine etkisi, üretimi ve gıda güvenliği. Gıda, 2022. 47(4): p. 630–649.
  • 7. Di Gioia, F., C. Mininni, and P. Santamaria, Come coltivare microortaggi, Microgreens, F. Di Gioia and P. Santamaria, Editors. 2015, ECO-logica. Italy. p. 51–80.
  • 8. Lobiuc, A., et al., Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules, 2017. 22(12): p. 2111.
  • 9. Kyriacou, M.C., et al., Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chemistry, 2019. 277: p. 107–118.
  • 10. Kyriacou, M.C., et al., Micro-scale vegetable production and the rise of microgreens. Trends in Food Science & Technology, 2016. 57: p. 103–115.
  • 11. Anonim, Microgreens market. 2023, Straits Research. [Erişim Tarihi: 14 Ekim 2023]
  • 12. Arın, L., et al., Bazı lahanagil (Cruciferae) ve baklagil (Fabaceae) türlerinin tohum filizlerindeki kimyasal özelliklerin değişimi ve beslenme değeri. Journal of Agricultural Sciences, 2014. 20(3): s. 230–238.
  • 13. Orhun, G.E., and A. Levent, Determining the best sprouting conditions for germination of radish (Raphanus sativus) seeds consumed as vegetables. Journal of Food, Agriculture & Environment, 2008. 6(1): p. 123–127.
  • 14. Brazaityte, A., et al., Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens. International Agrophysics, 2015. 29(1): p. 13–22.
  • 15. Murchie, E.H., and K.K. Niyogi, Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology, 2011. 155(1): p. 86–92.
  • 16. Karaağaç, O., et al., Bazı yerel çeşitlere ait tohumların mikrofiliz olarak üretim potansiyellerinin ortaya konulması, yetiştirme koşullarının optimizasyonu ve besin içeriklerinin belirlenmesi. BÜGEM Projesi, 2022.
  • 17. Demir, K., G. Sarıkamış, and G.Ç. Seyrek, Effect of LED lights on the growth, nutritional quality and glucosinolate content of broccoli, cabbage and radish microgreens. Food Chemistry, 2023. 401: p. 134088.
  • 18. International Seed Testing Association, ISTA rules: International rules for seed testing. 2021.
  • 19. Batu, A., et al., Minolta ve Hunter renk ölçüm aletleri ile domates, elma ve muzun renk değerlerinin karşılaştırılması. Gıda, 1997. 22(4): p. 301–307.
  • 20. Acar, K., Fluoresans Renkler İçeren Boyama Reçetesi Tahmin Algoritmalarında Başarının Artırılmasına Yönelik Yeni Bir Yöntem. Doktora Tezi. 2009, Marmara Üniversitesi, Fen Bilimleri Enstitüsü: İstanbul.
  • 21. Bağcı, A., Soğan (Allium cepa L.) Genetik Kaynaklarının Morfolojik ve Moleküler Karakterizasyonu. Yüksek Lisans Tezi. 2023, Ondokuz Mayıs Üniversitesi, Lisansüstü Eğitim Enstitüsü: Samsun.
  • 22. Kim, J., H.S. Lee, and S. Park, Biomass accumulation under different light environments. Journal of Plant Growth Regulation, 2015. 62(1): p. 45–52.
  • 23. Kandemir, D., et al., Lahanagiller familyasına ait bazı sebze türlerinin vejetatif büyüme özelliklerinin incelenmesi. Black Sea Journal of Engineering and Science, 2023. 6(4): p. 624–632.
  • 24. Samuoliene, G., et al., LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chemistry, 2012. 134(3): p. 1494–1499.
  • 25. Zhang, X., et al., A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends in Food Science & Technology, 2020. 99: p. 193–204.
  • 26. Jones-Baumgardt, et al., The growth and morphology of microgreens is associated with modified ascorbate and anthocyanin profiles in response to the intensity of sole-source light-emitting diodes. Canadian Journal of Plant Science, 2021. 101(2): p. 212–228.
  • 27. Tuan, P.A., et al., Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.). Journal of Agricultural and Food Chemistry, 2013. 61(50): p. 12356–12361.
  • 28. Choe, U., L.L. Yu, and T.T. Wang, The science behind microgreens as an exciting new food for the 21st century. Journal of Agricultural and Food Chemistry, 2018. 66(44): p. 11519–11530.
  • 29. Kurina, A.B., et al., Genetic diversity of phenotypic and biochemical traits in VIR radish (Raphanus sativus L.) germplasm collection. Plants, 2021. 10(9): p. 1799.
  • 30. Garegnani, M., et al., Non-destructive real-time analysis of plant metabolite accumulation in radish microgreens under different LED light recipes. Frontiers in Plant Science, 2024. 14: p. 1289208.
  • 31. Zha, L., and W. Liu, Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LEDs. Horticulture, Environment and Biotechnology, 2018. 59: p. 511–518.
  • 32. Kong, Y., and Y. Zheng, Phototropin is partly involved in blue-light-mediated stem elongation, flower initiation, and leaf expansion: A comparison of phenotypic responses between wild Arabidopsis and its phototropin mutants. Environmental and Experimental Botany, 2020. 171: p. 103967.
  • 33. Brazaityte, A., et al., Effect of different ratios of blue and red LED light on Brassicaceae microgreens under a controlled environment. Plants, 2021. 10(4): p. 801.
  • 34. Yorio, N.C., et al., Improving spinach, radish, and lettuce growth under red LEDs with blue light supplementation. HortScience, 2001. 36: p. 380–383.
  • 35. Pennisi, G., et al., Modelling environmental burdens of indoor-grown vegetables and herbs as affected by red and blue LED lighting. Sustainability, 2019. 11(15): p. 4063.
  • 36. Kopsell, D.A., et al., Shoot tissue pigment levels increase in ‘Florida Broadleaf’ mustard (Brassica juncea L.) microgreens following high light treatment. Scientia Horticulturae, 2012. 140: p. 96–99.
  • 37. Liu, H., et al., The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. Journal of Functional Foods, 2016. 25: p. 459–465.
  • 38. Fahey, J.W., Y. Zhang, and P. Talalay, Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences, 1997. 94(19): p. 10367–10372.
  • 39. Xiao, Z., et al., Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. Journal of Food Composition and Analysis, 2016. 49: p. 87–93.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

İbrahim Özkan 0009-0000-7351-5978

Seda Atasoy 0000-0002-7906-604X

Fatih İpek 0009-0000-7889-9173

Melek Nur Özdemir 0009-0009-3310-9372

Ahmet Balkaya 0000-0001-9114-615X

Early Pub Date August 15, 2025
Publication Date August 15, 2025
Submission Date April 21, 2025
Acceptance Date May 20, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

EndNote Özkan İ, Atasoy S, İpek F, Özdemir MN, Balkaya A (August 1, 2025) Farklı Renklerde LED Işıklarının Turp Mikro Filizlerinde Vejetatif Büyüme Üzerine Etkisinin İncelenmesi. International Journal of Life Sciences and Biotechnology 8 2 123–132.



Follow us on social networks  19277 19276 20153  22366