Research Article
BibTex RIS Cite
Year 2023, Volume: 1 Issue: 2, 57 - 66, 17.12.2023
https://doi.org/10.26650/ijmath.2023.00007

Abstract

References

  • Alpay, D., Kaptanoğlu, H. T., 2007, Toeplitz operators on Arveson and Dirichlet spaces, Integr. Equ. Oper. Theory, 58 , 1–33. google scholar
  • Axler, S., Bourdon, P., Ramey, W., 2001, Harmonic Function Theory, 2nd ed., Grad. Texts in Math., vol. 137, Springer, New York. google scholar
  • Choe, B. R., Koo, H., Yi, H., 2001, Derivatives of harmonic Bergman and Bloch functions on the ball, J. Math. Anal. Appl., 260, 100–123. google scholar
  • Choe, B. R., Koo, H., Yi, H., 2002, Positive Toeplitz operators between the harmonic Bergman spaces, Potential Anal., 17, 307–335. google scholar
  • Choe, B. R., Koo, H., Lee, Y., 2008, Positive Schatten class Toeplitz operators on the ball, Studia Math., 189, 65–90. google scholar
  • Choe, B. R., Lee, Y. J., Na, K., 2004, Toeplitz operators on harmonic Bergman spaces, Nagoya Math. J., 174, 165–186. google scholar
  • Choe, B. R., Lee, Y. J., Na, K., 2004, Positive Toeplitz operators from a harmonic Bergman space into another, Tohoku Math. J., 56 (2), 255–270. google scholar
  • Coifman, R. R., Rochberg, R., 1980, Representation theorems for holomorphic and harmonic functions in 𝐿𝑝, Astérisque, 77, 12–66. google scholar
  • Doğan, Ö. F., 2020, Harmonic Besov spaces with small exponents, Complex Var. and Elliptic Equ., 65, 1051–1075. google scholar
  • Doğan, Ö. F., 2022, Positive Toeplitz operators from a harmonic Bergman–Besov space into another, Banach J. Math. Anal., 16, 70. google scholar
  • Doğan, Ö. F., Üreyen, A. E., 2018, Weighted harmonic Bloch spaces on the ball, Complex Anal. Oper. Theory, 12, 1143–1177. google scholar
  • Djrbashian, A. E., Shamoian, F. A., 1988, Topics in the Theory of 𝐴𝑝𝛼 Spaces, Teubner Texts in Math., vol. 105, BSB B. G. Teubner Verlagsgesellschaft, Leipzig. google scholar
  • Gergün, S., Kaptanoğlu, H. T., Üreyen, A. E., 2009, Reproducing kernels for harmonic Besov spaces on the ball, C. R. Math. Acad. Sci. Paris, 347, 735–738. google scholar
  • Gergün, S., Kaptanoğlu, H. T., Üreyen, A. E., 2016, Harmonic Besov spaces on the ball, Int. J. Math., 27, 1650070, 59 pp. google scholar
  • Jevtić, M., Pavlović, M., 1999, Harmonic Bergman functions on the unit ball in R𝑛, Acta Math. Hungar., 85, 81–96. google scholar
  • Ligocka, E., 1987, On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in R𝑛, Studia Math., 87, 23–32. google scholar
  • Luecking, D. H., 1993, Embedding theorems for spaces of analytic functions via Khinchine’s inequality, Michigan Math. J., 40, 333–358. google scholar
  • Miao, J., 1998, Reproducing kernels for harmonic Bergman spaces of the unit ball, Monatsh. Math., 125, 25–35. google scholar
  • Miao, J., 1997, Toeplitz operators on harmonic Bergman spaces, Integr. Equ. Oper. Theory, 27, 426–438. google scholar
  • Pau, J., Zhao, R., 2015, Carleson measures and Toeplitz operators for weighted Bergman spaces of the unit ball, Michigan Math. J., 64, 759–796. google scholar
  • Ren, G., 2003, Harmonic Bergman spaces with small exponents in the unit ball, Collect. Math., 53, 83–98. google scholar
  • Ren, G., Kähler, U., 2003, Weighted harmonic Bloch spaces and Gleason’s problem, Complex Var. Theory Appl., 48, 235–245. google scholar

Positive Toeplitz Operators from aWeighted Harmonic Bloch Space into Another

Year 2023, Volume: 1 Issue: 2, 57 - 66, 17.12.2023
https://doi.org/10.26650/ijmath.2023.00007

Abstract

In the present paper, we define positive general Toeplitz operators between weighted harmonic Bloch spaces 𝑏∞𝛼 on the unit ball of R𝑛 for the full range of parameter 𝛼 ∈ R, where symbols are positive Borel measures on the unit ball of R𝑛. We characterize the boundedness and compactness of Toeplitz operators from one weighted harmonic Bloch space into another in terms of Carleson measures and vanishing Carleson measures. Recently, in Doğan (2022), positive symbols of bounded and compact general Toeplitz operators between harmonic Bergman-Besov spaces are completely characterized in term of Carleson measures and vanishing Carleson measures. Our results extend those known for harmonic Bloch space.

References

  • Alpay, D., Kaptanoğlu, H. T., 2007, Toeplitz operators on Arveson and Dirichlet spaces, Integr. Equ. Oper. Theory, 58 , 1–33. google scholar
  • Axler, S., Bourdon, P., Ramey, W., 2001, Harmonic Function Theory, 2nd ed., Grad. Texts in Math., vol. 137, Springer, New York. google scholar
  • Choe, B. R., Koo, H., Yi, H., 2001, Derivatives of harmonic Bergman and Bloch functions on the ball, J. Math. Anal. Appl., 260, 100–123. google scholar
  • Choe, B. R., Koo, H., Yi, H., 2002, Positive Toeplitz operators between the harmonic Bergman spaces, Potential Anal., 17, 307–335. google scholar
  • Choe, B. R., Koo, H., Lee, Y., 2008, Positive Schatten class Toeplitz operators on the ball, Studia Math., 189, 65–90. google scholar
  • Choe, B. R., Lee, Y. J., Na, K., 2004, Toeplitz operators on harmonic Bergman spaces, Nagoya Math. J., 174, 165–186. google scholar
  • Choe, B. R., Lee, Y. J., Na, K., 2004, Positive Toeplitz operators from a harmonic Bergman space into another, Tohoku Math. J., 56 (2), 255–270. google scholar
  • Coifman, R. R., Rochberg, R., 1980, Representation theorems for holomorphic and harmonic functions in 𝐿𝑝, Astérisque, 77, 12–66. google scholar
  • Doğan, Ö. F., 2020, Harmonic Besov spaces with small exponents, Complex Var. and Elliptic Equ., 65, 1051–1075. google scholar
  • Doğan, Ö. F., 2022, Positive Toeplitz operators from a harmonic Bergman–Besov space into another, Banach J. Math. Anal., 16, 70. google scholar
  • Doğan, Ö. F., Üreyen, A. E., 2018, Weighted harmonic Bloch spaces on the ball, Complex Anal. Oper. Theory, 12, 1143–1177. google scholar
  • Djrbashian, A. E., Shamoian, F. A., 1988, Topics in the Theory of 𝐴𝑝𝛼 Spaces, Teubner Texts in Math., vol. 105, BSB B. G. Teubner Verlagsgesellschaft, Leipzig. google scholar
  • Gergün, S., Kaptanoğlu, H. T., Üreyen, A. E., 2009, Reproducing kernels for harmonic Besov spaces on the ball, C. R. Math. Acad. Sci. Paris, 347, 735–738. google scholar
  • Gergün, S., Kaptanoğlu, H. T., Üreyen, A. E., 2016, Harmonic Besov spaces on the ball, Int. J. Math., 27, 1650070, 59 pp. google scholar
  • Jevtić, M., Pavlović, M., 1999, Harmonic Bergman functions on the unit ball in R𝑛, Acta Math. Hungar., 85, 81–96. google scholar
  • Ligocka, E., 1987, On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in R𝑛, Studia Math., 87, 23–32. google scholar
  • Luecking, D. H., 1993, Embedding theorems for spaces of analytic functions via Khinchine’s inequality, Michigan Math. J., 40, 333–358. google scholar
  • Miao, J., 1998, Reproducing kernels for harmonic Bergman spaces of the unit ball, Monatsh. Math., 125, 25–35. google scholar
  • Miao, J., 1997, Toeplitz operators on harmonic Bergman spaces, Integr. Equ. Oper. Theory, 27, 426–438. google scholar
  • Pau, J., Zhao, R., 2015, Carleson measures and Toeplitz operators for weighted Bergman spaces of the unit ball, Michigan Math. J., 64, 759–796. google scholar
  • Ren, G., 2003, Harmonic Bergman spaces with small exponents in the unit ball, Collect. Math., 53, 83–98. google scholar
  • Ren, G., Kähler, U., 2003, Weighted harmonic Bloch spaces and Gleason’s problem, Complex Var. Theory Appl., 48, 235–245. google scholar
There are 22 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Articles
Authors

Ömer Faruk Doğan 0000-0002-0168-1456

Publication Date December 17, 2023
Published in Issue Year 2023 Volume: 1 Issue: 2

Cite

APA Doğan, Ö. F. (2023). Positive Toeplitz Operators from aWeighted Harmonic Bloch Space into Another. Istanbul Journal of Mathematics, 1(2), 57-66. https://doi.org/10.26650/ijmath.2023.00007
AMA Doğan ÖF. Positive Toeplitz Operators from aWeighted Harmonic Bloch Space into Another. Istanbul Journal of Mathematics. December 2023;1(2):57-66. doi:10.26650/ijmath.2023.00007
Chicago Doğan, Ömer Faruk. “Positive Toeplitz Operators from AWeighted Harmonic Bloch Space into Another”. Istanbul Journal of Mathematics 1, no. 2 (December 2023): 57-66. https://doi.org/10.26650/ijmath.2023.00007.
EndNote Doğan ÖF (December 1, 2023) Positive Toeplitz Operators from aWeighted Harmonic Bloch Space into Another. Istanbul Journal of Mathematics 1 2 57–66.
IEEE Ö. F. Doğan, “Positive Toeplitz Operators from aWeighted Harmonic Bloch Space into Another”, Istanbul Journal of Mathematics, vol. 1, no. 2, pp. 57–66, 2023, doi: 10.26650/ijmath.2023.00007.
ISNAD Doğan, Ömer Faruk. “Positive Toeplitz Operators from AWeighted Harmonic Bloch Space into Another”. Istanbul Journal of Mathematics 1/2 (December 2023), 57-66. https://doi.org/10.26650/ijmath.2023.00007.
JAMA Doğan ÖF. Positive Toeplitz Operators from aWeighted Harmonic Bloch Space into Another. Istanbul Journal of Mathematics. 2023;1:57–66.
MLA Doğan, Ömer Faruk. “Positive Toeplitz Operators from AWeighted Harmonic Bloch Space into Another”. Istanbul Journal of Mathematics, vol. 1, no. 2, 2023, pp. 57-66, doi:10.26650/ijmath.2023.00007.
Vancouver Doğan ÖF. Positive Toeplitz Operators from aWeighted Harmonic Bloch Space into Another. Istanbul Journal of Mathematics. 2023;1(2):57-66.