Research Article
BibTex RIS Cite
Year 2023, Volume: 1 Issue: 2, 67 - 73, 17.12.2023
https://doi.org/10.26650/ijmath.2023.00008

Abstract

References

  • Allison, D.E., 1988, Geodesic completeness in static space-times, Geom. Dedic., 26, 85-97. google scholar
  • Allison, D.E., 1998, Energy conditions in standard static space-times, Gen. Relativ. Gravit., 20(2), 115-122. google scholar
  • Allison, D.E., Ünal, B., 2003, Geodesic structure of standard static space-times, J. Geom. Phys. 46(2), 193–200. google scholar
  • Besse, A.L., 2007, Einstein Manifolds, Classics in Mathematics, Springer: Berlin, Germany. google scholar
  • Bishop, R. L., O’Neill, B., 1969, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145(1), 1-49. google scholar
  • Blaga, A.M., Taştan, H.M., 2022, Gradient solitons on doubly warped product manifolds, Rep. Math. Phys., 89(3), 319-333. google scholar
  • Chen, B.Y., 2017, Differential geometry of warped product manifolds and submanifolds, World Scientific. google scholar
  • Chen, B.Y., 2015, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52(5), 1535–1547. google scholar
  • De, U.C., Shenaway, S., Ünal, B., 2021, 𝜑(Ric)-vector fields on warped product manifolds and applications, Afr. Mat, 32, 1709-1716. google scholar
  • Ehrlich, P.E., 1974, Metric deformations of Ricci and sectional curvature on compact Riemannian manifolds, P.h.D. Dissertation, SUNNY Stony Brook, New York. google scholar
  • El-Sayied, H. K., Mantica, C. A., Shenawy, S. Syied, N., 2020, Gray’s Decomposition on Doubly Warped Product Manifolds and Applications, Filomat, 34(11), 3767-3776. google scholar
  • Flores, J.L., Sánchez, M., 2000, Geodesic connectedness and conjugate points in GRW spacetimes, J. Geom. Phys., 36(3-4), 285-314. google scholar
  • Gutierrez, M., Olea, B., 2012, Semi-Riemannian manifolds with a doubly warped structure, Rev. Mat. Iberoam., 28(1), 1-24. google scholar
  • Hinterleitner, I., Kiosak, V.A, 2008, 𝜑(Ric)-vector fields in Riemannian spaces, Arch. Math., 44(5), 385–390. google scholar
  • Hinterleitner, I., Kiosak, V.A, 2009, 𝜑(Ric)-vector fields on conformally flat spaces, AIP. Conf. Prof., 1191(1), 98-103. google scholar
  • Kırık, B., Özen Zengin, F., 2015, Conformal mappings of quasi-Einstein manifolds admitting special vector fields, Filomat, 29(3), 525–534. google scholar
  • Kırık, B., Özen Zengin, F., 2015, Generalized quasi-Einstein manifolds admitting special vector fields, Acta Math. Acad. Paedagog. Nyregyhziensis, 31(1), 61–69. google scholar
  • Kırık, B., Özen Zengin, F., 2019, Applications of a special generalized quasi-Einstein manifold, Bull.Iran.Math. Soc., 45, 89–102. google scholar
  • Kobayashi, S., 1995, Transformations groups in differential geometry, Classic in Mathematics, Springer: Berlin, Germany. google scholar
  • O’Neill, B., 1983, Semi-Riemannian Geometry with Applications to Relativity, Academic Press Limited: London, England. google scholar
  • Sánchez, M., 1998, On the geometry of generalized Robertson–Walker spacetimes: geodesics, Gen. Relativ. Gravit., 30(6), 915-93. google scholar
  • Sánchez, M., 1999, On the geometry of generalized Robertson–Walker space times: curvature and killing fields, J. Geom. Phys., 31(1), 1-15. google scholar
  • Özen Zengin, F., Kırık, B., Conformal mappings of nearly quasi-Einstein manifolds, Miskolc Math. Notes, 14(2), 629–636. google scholar

𝜁 (Ric)-vector fields on doubly warped product manifolds

Year 2023, Volume: 1 Issue: 2, 67 - 73, 17.12.2023
https://doi.org/10.26650/ijmath.2023.00008

Abstract

We investigate 𝜁 (Ric)-vector fields on doubly warped product manifolds. We obtain some results when the vector field is also 𝜁 (Ric) on factor manifolds.We prove that if a vector field is a 𝜁 (Ric)-vector field on a doubly warped product manifold, it is also a 𝜁 (Ric)-vector field on the factor manifolds under certain conditions. Also, we show that a vector field on a doubly warped product manifold can be a 𝜁 (Ric)-vector field with some conditions. Moreover we give two important applications of this concept in the Lorentzian settings, which are the doubly warped product generalized Robertson-Walker space-time and doubly warped product standard static space-time.

References

  • Allison, D.E., 1988, Geodesic completeness in static space-times, Geom. Dedic., 26, 85-97. google scholar
  • Allison, D.E., 1998, Energy conditions in standard static space-times, Gen. Relativ. Gravit., 20(2), 115-122. google scholar
  • Allison, D.E., Ünal, B., 2003, Geodesic structure of standard static space-times, J. Geom. Phys. 46(2), 193–200. google scholar
  • Besse, A.L., 2007, Einstein Manifolds, Classics in Mathematics, Springer: Berlin, Germany. google scholar
  • Bishop, R. L., O’Neill, B., 1969, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145(1), 1-49. google scholar
  • Blaga, A.M., Taştan, H.M., 2022, Gradient solitons on doubly warped product manifolds, Rep. Math. Phys., 89(3), 319-333. google scholar
  • Chen, B.Y., 2017, Differential geometry of warped product manifolds and submanifolds, World Scientific. google scholar
  • Chen, B.Y., 2015, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52(5), 1535–1547. google scholar
  • De, U.C., Shenaway, S., Ünal, B., 2021, 𝜑(Ric)-vector fields on warped product manifolds and applications, Afr. Mat, 32, 1709-1716. google scholar
  • Ehrlich, P.E., 1974, Metric deformations of Ricci and sectional curvature on compact Riemannian manifolds, P.h.D. Dissertation, SUNNY Stony Brook, New York. google scholar
  • El-Sayied, H. K., Mantica, C. A., Shenawy, S. Syied, N., 2020, Gray’s Decomposition on Doubly Warped Product Manifolds and Applications, Filomat, 34(11), 3767-3776. google scholar
  • Flores, J.L., Sánchez, M., 2000, Geodesic connectedness and conjugate points in GRW spacetimes, J. Geom. Phys., 36(3-4), 285-314. google scholar
  • Gutierrez, M., Olea, B., 2012, Semi-Riemannian manifolds with a doubly warped structure, Rev. Mat. Iberoam., 28(1), 1-24. google scholar
  • Hinterleitner, I., Kiosak, V.A, 2008, 𝜑(Ric)-vector fields in Riemannian spaces, Arch. Math., 44(5), 385–390. google scholar
  • Hinterleitner, I., Kiosak, V.A, 2009, 𝜑(Ric)-vector fields on conformally flat spaces, AIP. Conf. Prof., 1191(1), 98-103. google scholar
  • Kırık, B., Özen Zengin, F., 2015, Conformal mappings of quasi-Einstein manifolds admitting special vector fields, Filomat, 29(3), 525–534. google scholar
  • Kırık, B., Özen Zengin, F., 2015, Generalized quasi-Einstein manifolds admitting special vector fields, Acta Math. Acad. Paedagog. Nyregyhziensis, 31(1), 61–69. google scholar
  • Kırık, B., Özen Zengin, F., 2019, Applications of a special generalized quasi-Einstein manifold, Bull.Iran.Math. Soc., 45, 89–102. google scholar
  • Kobayashi, S., 1995, Transformations groups in differential geometry, Classic in Mathematics, Springer: Berlin, Germany. google scholar
  • O’Neill, B., 1983, Semi-Riemannian Geometry with Applications to Relativity, Academic Press Limited: London, England. google scholar
  • Sánchez, M., 1998, On the geometry of generalized Robertson–Walker spacetimes: geodesics, Gen. Relativ. Gravit., 30(6), 915-93. google scholar
  • Sánchez, M., 1999, On the geometry of generalized Robertson–Walker space times: curvature and killing fields, J. Geom. Phys., 31(1), 1-15. google scholar
  • Özen Zengin, F., Kırık, B., Conformal mappings of nearly quasi-Einstein manifolds, Miskolc Math. Notes, 14(2), 629–636. google scholar
There are 23 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Articles
Authors

Sibel Gerdan Aydın 0000-0001-5278-6066

Moctar Traore 0000-0003-2132-789X

Hakan Mete Taştan 0000-0002-0773-9305

Publication Date December 17, 2023
Published in Issue Year 2023 Volume: 1 Issue: 2

Cite

APA Gerdan Aydın, S., Traore, M., & Taştan, H. M. (2023). 𝜁 (Ric)-vector fields on doubly warped product manifolds. Istanbul Journal of Mathematics, 1(2), 67-73. https://doi.org/10.26650/ijmath.2023.00008
AMA Gerdan Aydın S, Traore M, Taştan HM. 𝜁 (Ric)-vector fields on doubly warped product manifolds. Istanbul Journal of Mathematics. December 2023;1(2):67-73. doi:10.26650/ijmath.2023.00008
Chicago Gerdan Aydın, Sibel, Moctar Traore, and Hakan Mete Taştan. “𝜁 (Ric)-Vector Fields on Doubly Warped Product Manifolds”. Istanbul Journal of Mathematics 1, no. 2 (December 2023): 67-73. https://doi.org/10.26650/ijmath.2023.00008.
EndNote Gerdan Aydın S, Traore M, Taştan HM (December 1, 2023) 𝜁 (Ric)-vector fields on doubly warped product manifolds. Istanbul Journal of Mathematics 1 2 67–73.
IEEE S. Gerdan Aydın, M. Traore, and H. M. Taştan, “𝜁 (Ric)-vector fields on doubly warped product manifolds”, Istanbul Journal of Mathematics, vol. 1, no. 2, pp. 67–73, 2023, doi: 10.26650/ijmath.2023.00008.
ISNAD Gerdan Aydın, Sibel et al. “𝜁 (Ric)-Vector Fields on Doubly Warped Product Manifolds”. Istanbul Journal of Mathematics 1/2 (December 2023), 67-73. https://doi.org/10.26650/ijmath.2023.00008.
JAMA Gerdan Aydın S, Traore M, Taştan HM. 𝜁 (Ric)-vector fields on doubly warped product manifolds. Istanbul Journal of Mathematics. 2023;1:67–73.
MLA Gerdan Aydın, Sibel et al. “𝜁 (Ric)-Vector Fields on Doubly Warped Product Manifolds”. Istanbul Journal of Mathematics, vol. 1, no. 2, 2023, pp. 67-73, doi:10.26650/ijmath.2023.00008.
Vancouver Gerdan Aydın S, Traore M, Taştan HM. 𝜁 (Ric)-vector fields on doubly warped product manifolds. Istanbul Journal of Mathematics. 2023;1(2):67-73.