Research Article
BibTex RIS Cite
Year 2024, Volume: 2 Issue: 2, 55 - 69, 31.12.2024
https://doi.org/10.26650/ijmath.2024.00016

Abstract

References

  • Arthur, J., 2005, An introduction to the trace formula. Clay Math. Proc. 4, 1-263. google scholar
  • Bump, D., 2013, Lie Groups, 2nd edition. Graduate Texts in Mathematics, Springer-Verlag, New York. google scholar
  • Carter, R. W., 1993, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester. google scholar
  • Chasek, M. D., 2023, A Vector-valued Trace Formula for Finite Groups. M.A. Thesis, The University of Maine, US. google scholar
  • Green, J. A., 1955, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80, 402-447. google scholar
  • Lee, S., 2022, Trace formula for finite groups, https://seewoo5.github.io/jekyll/update/2022/11/18/finite-group-trace-formula.html. google scholar
  • Macdonald, I. G., 1980, Zeta functions attached to finite general linear group. Math. Ann. 249, 1-15. google scholar
  • Piatetski-Shapiro, I., 1983, Complex Representations of GL(2, k) for Finite Fields K. Contemp. Math. 16. google scholar
  • Serre, J. P., 1972, Linear Representations of Finite Groups. Graduate Texts in Mathematics 42, Springer-Verlag, New York and Heidelberg. google scholar
  • Silberger A. andZink, E. W., 2008, Explicit Shintani base change and the Macdonald correspondence for characters of GL„ (k). Journal of Algebra 319, 4147-4176. google scholar
  • Terras, A., 1999, Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts 43, Cambridge University Press, Cambridge. google scholar
  • Vogan, D., 2020, Local Langlands conjecture for finite groups of Lie type. Joint Mathematics Meetings AMS-MAA, Denver, 15-18. google scholar
  • Yang J. H, 2006, Trace formulas on finite groups. Commun. Korean Math. Soc. 21, 17-25. google scholar
  • Ye, R. and Zelingher, E., 2021, Epsilon factors of representations of finite general linear groups. Journal of Number Theory 221, 122-142. google scholar

Trace formula for finite groups and the Macdonald correspondence for GL𝑛(F𝑞)

Year 2024, Volume: 2 Issue: 2, 55 - 69, 31.12.2024
https://doi.org/10.26650/ijmath.2024.00016

Abstract

Let 𝐺 be a finite group. The trace formula for 𝐺, which is the trivial case of the Arthur trace formula, is well known with many applications. In this note, we further consider a subgroup Γ of 𝐺 and a representation 𝜌 : Γ → GL(𝑉𝜌) of Γ on a finite dimensional C-vector space𝑉𝜌, and compute the trace Tr(Ind𝐺 Γ (𝜌) ( 𝑓 )) of the operator Ind𝐺 Γ 𝜌( 𝑓 ) : Ind𝐺 Γ (𝑉𝜌) → Ind𝐺 Γ (𝑉𝜌) for any function 𝑓 : 𝐺 → C in two different ways. The expressions for Tr(Ind𝐺 Γ (𝜌) ( 𝑓 )) denoted by 𝐽 (𝜌, 𝑓 ) and 𝐼(𝜌, 𝑓 ) are the spectral side and the geometric side of the trace formula for Tr(Ind𝐺 Γ (𝜌) ( 𝑓 )), respectively. The identity 𝐽 (𝜌, 𝑓 ) = Tr(Ind𝐺 Γ (𝜌) ( 𝑓 )) = 𝐼(𝜌, 𝑓 ) is a generalization of the trace formula for the finite group 𝐺. This theory is then applied to the “automorphic side” of the Macdonald correspondence for GL𝑛 (F𝑞); namely, to the “automorphic side” of the local 0-dimensional Langlands correspondence for GL(𝑛), where new identities are obtained for the 𝜖-factors of representations of GL𝑛 (F𝑞).

References

  • Arthur, J., 2005, An introduction to the trace formula. Clay Math. Proc. 4, 1-263. google scholar
  • Bump, D., 2013, Lie Groups, 2nd edition. Graduate Texts in Mathematics, Springer-Verlag, New York. google scholar
  • Carter, R. W., 1993, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester. google scholar
  • Chasek, M. D., 2023, A Vector-valued Trace Formula for Finite Groups. M.A. Thesis, The University of Maine, US. google scholar
  • Green, J. A., 1955, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80, 402-447. google scholar
  • Lee, S., 2022, Trace formula for finite groups, https://seewoo5.github.io/jekyll/update/2022/11/18/finite-group-trace-formula.html. google scholar
  • Macdonald, I. G., 1980, Zeta functions attached to finite general linear group. Math. Ann. 249, 1-15. google scholar
  • Piatetski-Shapiro, I., 1983, Complex Representations of GL(2, k) for Finite Fields K. Contemp. Math. 16. google scholar
  • Serre, J. P., 1972, Linear Representations of Finite Groups. Graduate Texts in Mathematics 42, Springer-Verlag, New York and Heidelberg. google scholar
  • Silberger A. andZink, E. W., 2008, Explicit Shintani base change and the Macdonald correspondence for characters of GL„ (k). Journal of Algebra 319, 4147-4176. google scholar
  • Terras, A., 1999, Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts 43, Cambridge University Press, Cambridge. google scholar
  • Vogan, D., 2020, Local Langlands conjecture for finite groups of Lie type. Joint Mathematics Meetings AMS-MAA, Denver, 15-18. google scholar
  • Yang J. H, 2006, Trace formulas on finite groups. Commun. Korean Math. Soc. 21, 17-25. google scholar
  • Ye, R. and Zelingher, E., 2021, Epsilon factors of representations of finite general linear groups. Journal of Number Theory 221, 122-142. google scholar
There are 14 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Articles
Authors

Kazım İlhan İkeda

Publication Date December 31, 2024
Submission Date June 25, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

APA İkeda, K. İ. (2024). Trace formula for finite groups and the Macdonald correspondence for GL𝑛(F𝑞). Istanbul Journal of Mathematics, 2(2), 55-69. https://doi.org/10.26650/ijmath.2024.00016
AMA İkeda Kİ. Trace formula for finite groups and the Macdonald correspondence for GL𝑛(F𝑞). Istanbul Journal of Mathematics. December 2024;2(2):55-69. doi:10.26650/ijmath.2024.00016
Chicago İkeda, Kazım İlhan. “Trace Formula for Finite Groups and the Macdonald Correspondence for GL𝑛(F𝑞)”. Istanbul Journal of Mathematics 2, no. 2 (December 2024): 55-69. https://doi.org/10.26650/ijmath.2024.00016.
EndNote İkeda Kİ (December 1, 2024) Trace formula for finite groups and the Macdonald correspondence for GL𝑛(F𝑞). Istanbul Journal of Mathematics 2 2 55–69.
IEEE K. İ. İkeda, “Trace formula for finite groups and the Macdonald correspondence for GL𝑛(F𝑞)”, Istanbul Journal of Mathematics, vol. 2, no. 2, pp. 55–69, 2024, doi: 10.26650/ijmath.2024.00016.
ISNAD İkeda, Kazım İlhan. “Trace Formula for Finite Groups and the Macdonald Correspondence for GL𝑛(F𝑞)”. Istanbul Journal of Mathematics 2/2 (December 2024), 55-69. https://doi.org/10.26650/ijmath.2024.00016.
JAMA İkeda Kİ. Trace formula for finite groups and the Macdonald correspondence for GL𝑛(F𝑞). Istanbul Journal of Mathematics. 2024;2:55–69.
MLA İkeda, Kazım İlhan. “Trace Formula for Finite Groups and the Macdonald Correspondence for GL𝑛(F𝑞)”. Istanbul Journal of Mathematics, vol. 2, no. 2, 2024, pp. 55-69, doi:10.26650/ijmath.2024.00016.
Vancouver İkeda Kİ. Trace formula for finite groups and the Macdonald correspondence for GL𝑛(F𝑞). Istanbul Journal of Mathematics. 2024;2(2):55-69.