Research Article
BibTex RIS Cite

Metin Sınıflandırmaya Karşı Kriptografi Yöntemlerinin Kullanılması

Year 2024, Volume: 8 Issue: 2, 92 - 98, 22.12.2024

Abstract

Bu makale, makine öğrenmesi sınıflandırma algoritmalarına karşı verilerin gizliliğini sağlamak için kriptografik tekniklerin nasıl kullanılabileceğini araştırmaktadır. Çalışma, ruh sağlığı sorunlarıyla ilgili metin ve etiket sütunlarını içeren Mental Health Corpus veri kümesine odaklanmaktadır. Metinleri sınıflandırmak için Rastgele Orman (Random Forest, RF), Karar Ağacı (Decision Tree, DT) ve Destek Vektör Makinesi (Support Vector Machine, SVM) sınıflandırma algoritmaları kullanılmıştır. Sınıflandırma doğruluğunu azaltmak için ise kriptografi yöntemi olan karakter kaydırma (shift) uygulanmaktadır. Sonuçlar, karakter kaydırmalarının sınıflandırıcı doğruluğunu büyük ölçüde azalttığını, 1 karakter kadar küçük kaydırmaların tüm modellerde doğruluğu %30'dan fazla azalttığını göstermektedir. Bulgular, kriptografik yöntemlerin, özellikle hassas bilgilerin söz konusu olduğu çeşitli alanlarda veri gizliliğini ve güvenliğini artırma potansiyelini göstermektedir.

References

  • [1] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 1998.
  • [2] J. Breckling, Ed., The Analysis of Directional Time Series: Applications to Wind Speed and Direction, ser. Lecture Notes in Statistics. Berlin, Germany: Springer, 1989, vol. 61.
  • [3] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A novel ultrathin elevated channel low-temperature poly-Si TFT,” IEEE Electron Device Lett., vol. 20, pp. 569–571, Nov. 1999.
  • [4] M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, “High resolution fiber distributed measurements with coherent OFDR,” in Proc. ECOC’00, 2000, paper 11.3.4, p. 109.
  • [5] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed digital-to-RF converter,” U.S. Patent 5 668 842, Sept. 16, 1997.
  • [6] (2002) The IEEE website. [Online]. Available: http://www.ieee.org/
  • [7] M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. Available: http://www.ctan.org/tex-archive/macros/latex/contrib/supported/IEEEtran/
  • [8] FLEXChip Signal Processor (MC68175/D), Motorola, 1996.
  • [9] “PDCA12-70 data sheet,” Opto Speed SA, Mezzovico, Switzerland.
  • [10] A. Karnik, “Performance of TCP congestion control with rate feedback: TCP/ABR and rate adaptive TCP/IP,” M. Eng. thesis, Indian Institute of Science, Bangalore, India, Jan. 1999.
  • [11] J. Padhye, V. Firoiu, and D. Towsley, “A stochastic model of TCP Reno congestion avoidance and control,” Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.
  • [12] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 1997.

Using Cryptography Methods Against Text Classification

Year 2024, Volume: 8 Issue: 2, 92 - 98, 22.12.2024

Abstract

This article explores how cryptographic techniques can be used to ensure the confidentiality of data against machine learning classification algorithms. The study focuses on the Mental Health Corpus dataset, which contains text and tag columns related to mental health issues. Random Forest (RF), Decision Tree (DT) and Support Vector Machine (SVM) classification algorithms were used to classify the texts. To reduce classification accuracy, character shift, which is a cryptography method, is applied. Results show that character shifts greatly reduce classifier accuracy, with shifts as small as 1 character reducing accuracy by more than 30% across all models. The findings demonstrate the potential of cryptographic methods to increase data confidentiality and security in a variety of areas, especially where sensitive information is involved.

References

  • [1] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 1998.
  • [2] J. Breckling, Ed., The Analysis of Directional Time Series: Applications to Wind Speed and Direction, ser. Lecture Notes in Statistics. Berlin, Germany: Springer, 1989, vol. 61.
  • [3] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A novel ultrathin elevated channel low-temperature poly-Si TFT,” IEEE Electron Device Lett., vol. 20, pp. 569–571, Nov. 1999.
  • [4] M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, “High resolution fiber distributed measurements with coherent OFDR,” in Proc. ECOC’00, 2000, paper 11.3.4, p. 109.
  • [5] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed digital-to-RF converter,” U.S. Patent 5 668 842, Sept. 16, 1997.
  • [6] (2002) The IEEE website. [Online]. Available: http://www.ieee.org/
  • [7] M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. Available: http://www.ctan.org/tex-archive/macros/latex/contrib/supported/IEEEtran/
  • [8] FLEXChip Signal Processor (MC68175/D), Motorola, 1996.
  • [9] “PDCA12-70 data sheet,” Opto Speed SA, Mezzovico, Switzerland.
  • [10] A. Karnik, “Performance of TCP congestion control with rate feedback: TCP/ABR and rate adaptive TCP/IP,” M. Eng. thesis, Indian Institute of Science, Bangalore, India, Jan. 1999.
  • [11] J. Padhye, V. Firoiu, and D. Towsley, “A stochastic model of TCP Reno congestion avoidance and control,” Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.
  • [12] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 1997.
There are 12 citations in total.

Details

Primary Language Turkish
Subjects Cryptography, Artificial Intelligence (Other)
Journal Section Articles
Authors

Ahmet Emre Ergün 0000-0002-3025-5640

Özgü Can 0000-0002-8064-2905

Early Pub Date December 11, 2024
Publication Date December 22, 2024
Submission Date October 16, 2024
Acceptance Date November 28, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

IEEE A. E. Ergün and Ö. Can, “Metin Sınıflandırmaya Karşı Kriptografi Yöntemlerinin Kullanılması”, IJMSIT, vol. 8, no. 2, pp. 92–98, 2024.