Research Article
BibTex RIS Cite
Year 2024, Volume: 2 Issue: 2, 131 - 151, 27.09.2024

Abstract

Project Number

FEN-C-DRP-120613-0273

References

  • Modławska, J., & Grudka, A., (2008). Nonmaximally Entangled States Can Be Better for Multiple Linear Optical Teleportation. Physical Review Letters, 100, 110503.
  • Cavalcanti, D., Skrzypczyk, P., & Šupić, I., (2017).All Entangled States can Demonstrate Nonclassical Teleportation. Physical Review Letters, 119, 110501.
  • Z.A.Sabegh, R., & Mahmoudi, M., (2018). Spatially dependent atom-photon entanglement. Scientific Reports, 8, 13840.
  • Loss, D., & DiVincenzo, D., (1998). Quantum computation with quantum dots. Physical Review A, 57, 120.
  • Jürgen Audretsch (2007), The Quantum Computer. In Entangled Systems: New Directions in Quantum Physics (pp.219-245), Weinheim, Germany: John Wiley and Sons, Ltd.
  • Belsley, M. (2014). Introduction to Quantum Information Science, by Vlatko Vedral. Contemporary Physics, 55, 124.
  • DiVincenzo, D. (1997). Quantum computation and spin physics (invited). Journal of Applied Physics, 81, 4602-4607.
  • Zheng, S., & Guo, G., (2000). Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED. Physical Review Letters, 85, 2392-2395.
  • Bennett, C., & DiVincenzo, D., (2000). Quantum information and computation. Nature, 404, 1476-4687.
  • Eggert, S., Affleck, I., & Takahashi, M., (1994). Susceptibility of the spin 1/2 Heisenberg antiferromagnetic chain. Physical Review Letters, 73, 332-335.
  • Hammar, P., Stone, M., Reich, D., Broholm, C., Gibson, P., Turnbull, M., Landee, C., & Oshikawa, M., (1999). Characterization of a quasi-one-dimensional spin-1/2 magnet which is gapless and paramagnetic for g μ B H ≲ J and k_B T≪ J. Physical Review B, 59, 1008-1015.
  • Androvitsaneas, P., Fytas, N., Paspalakis, E., & Terzis, A.F., (2012). Quantum Monte Carlo simulations revisited: The case of anisotropic Heisenberg chains. Philosophical Magazine, 92, 4649-4656.
  • Barma, M., & Shastry, B., (1978). Classical equivalents of one-dimensional quantum-mechanical systems. Physical Review B, 18, 3351-3359.
  • Handscomb, D. (1964). A Monte Carlo method applied to the Heisenberg ferromagnet. Mathematical Proceedings of the Cambridge Philosophical Society, 60, 115-122.
  • Harada, K., & Kawashima, N., (2001). Loop Algorithm for Heisenberg Models with Biquadratic Interaction and Phase Transitions in Two Dimensions. Journal of the Physical Society of Japan, 70, 13-16.
  • Huang, Y., & Su, G., (2017). Quantum Monte Carlo study of the spin-1/2 honeycomb Heisenberg model with mixed antiferromagnetic and ferromagnetic interactions in external magnetic fields. Physical Review E, 95, 052147.
  • Sandvik, A., & Kurkijärvi, J., (1991). Quantum Monte Carlo simulation method for spin systems. Physical Review B, 43, 5950-5961.
  • Deger, C., Aksu, P., & Yildiz, F., (2016). Effect of Interdot Distance on Magnetic Behavior of 2-D Ni Dot Arrays. IEEE Transactions on Magnetics, 52, 1-4.
  • Duru, I., Değer, C., Kalaycı, T., & Arucu, M., (2015). A computational study on magnetic effects of Zn_(1-x) Cr_x O type diluted magnetic semiconductor. Journal of Magnetism and Magnetic Materials, 396 pp. 268-274.
  • Arnesen, M., Bose, S., & Vedral, V., (2001). Natural Thermal and Magnetic Entanglement in the 1D Heisenberg Model. Physical Review Letters, 87, 017901.
  • Marchukov, O.V., & Zinner, N., (2016). Quantum spin transistor with a Heisenberg spin chain. Nature Communications, 7, 13070.
  • Renes, J., Miyake, A., Brennen, G., & Bartlett, S., (2013). Holonomic quantum computing in symmetry-protected ground states of spin chains. New Journal of Physics, 15, 025020.
  • Apollaro, T., Lorenzo, S., Sindona, A., Paganelli, S., Giorgi, G., & Plastina, F., (2015). Many-qubit quantum state transfer via spin chains. Physica Scripta, T165 pp. 014036.
  • Wang, X., (2002). Threshold temperature for pairwise and many-particle thermal entanglement in the isotropic Heisenberg model. Physical Review A, 66, 044305.
  • Wang, X., (2001). Entanglement in the quantum Heisenberg XY model. Physical Review A, 64, 012313.
  • Rigolin, G., (2004). Thermal entanglement in the two-qubit Heisenberg XYZ model. International Journal of Quantum Information, 2, 393-405.
  • Androvitsaneas, P., Paspalakis, E., & Terzis, A., (2012). A quantum Monte Carlo study of the localizable entanglement in anisotropic ferromagnetic Heisenberg chains. Annals of Physics, 327, 212-223.
  • Sinyagin, A., Belov, A., Tang, Z., & Kotov, N., (2006). Monte Carlo Computer Simulation of Chain Formation from Nanoparticles. Journal of Physical Chemistry B, 110, 7500-7507.
  • Kim, I., (2013). Long-Range Entanglement is Necessary for a Topological Storage of Quantum Information. Physical Review Letters, 111, 080503.
  • Elman, S., Bartlett, S., & Doherty, A., (2017). Long-range entanglement for spin qubits via quantum Hall edge modes. Physical Review B, 96, 115407.
  • Bitko, D., Rosenbaum, T., & Aeppli, G., (1996). Quantum Critical Behavior for a Model Magnet. Physical Review Letters, 77, 940-943.
  • Chakraborty, P., Henelius, P., Kjønsberg, H., Sandvik, A., & Girvin, S., (2004). Theory of the magnetic phase diagram of LiHoF_4. Physical Review B, 70, 144411.
  • Bramwell, S., & Gingras, M., (2001). Spin Ice State in Frustrated Magnetic Pyrochlore Materials. Science, 294, 1495-1501.
  • Castelnovo, C. R., & Sondhi, S., (2008). Magnetic Monopoles in Spin Ice. Nature, 451, 42-45.
  • Mengotti, E., Heyderman, L., Bisig, A., Fraile Rodríguez, A., Le Guyader, L., Nolting, F., & Braun, H., (2009). Dipolar energy states in clusters of perpendicular magnetic nanoislands. Journal of Applied Physics, 105, 113113.
  • Lahaye, T., Menotti, C., Santos, L., Lewenstein, M., & Pfau, T., (2009). The physics of dipolar bosonic quantum gases. Reports on Progress in Physics. 72, 126401.
  • Peter, D., Müller, S., Wessel, S., & Büchler, H., (2012). Anomalous Behavior of Spin Systems with Dipolar Interactions. Physical Review Letters, 109, 025303.
  • Islam, R., Senko, C., Campbell, W., Korenblit, S., Smith, J., Lee, A., Edwards, E., Wang, C., Freericks, J., & Monroe, C., (2013). Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator. Science, 340, 583-587.
  • Jurcevic, P., & Roos, C., (2014). Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature, 511, 202-205.
  • Richerme, P., & Monroe, C., (2014). Non-local propagation of correlations in quantum systems with long-range interactions. Nature, j511 pp. 198-201.
  • Mahmoudian S., Rademaker L., Ralko A., Fratini S., & Dobrosavljevic V., (2015). Glassy Dynamics in Geometrically Frustrated Coulomb Liquids without Disorder. Physical Review Letters, 115, 025701.
  • Bohnet, J., Sawyer, B., Britton, J., Wall, M., Rey, A., Foss-Feig, M., & Bollinger, J., (2016). Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science, 352, 1297-1301.
  • Sahling, S., & Lorenzo, E., (2015). Experimental realization of long-distance entanglement between spins in antiferromagnetic quantum spin chains. Nature Physics, 15, 255-260.
  • Osborne, T., & Nielsen, M., (2002). Entanglement in a simple quantum phase transition. Physical Review A, 66, 032110.
  • Vidal, G., Latorre, J., Rico, E., & Kitaev, A., (2003). Entanglement in Quantum Critical Phenomena. Physical Review Letters, 90, 227902.
  • Bravo, B., Cabra, D., Gomez Albarracin, F., & Rossini, G., (2017). Long-range interactions in antiferromagnetic quantum spin chains. Physical Review B, 96, 054441.
  • Duru, I.P., & Aktas, S., (2019). Localizable entanglement of isotropic antiferromagnetic spin-1/2 chain. Turkish Journal of Physics. 43 pp. 272 - 279.
  • Bauer, B., Carr, L., Evertz, H., Feiguin, A., Freire, J., Fuchs, S., Gamper, L., Gukelberger, J., Gull, E., Guertler, S., Hehn, A., Igarashi, R., Isakov, S., Koop, D., Ma, P., Mates, P., Matsuo, H., Parcollet, O., Pawlowski, G., Picon, J., Pollet, L., Santos, E., Scarola, V., Schollwöck, U., Silva, C., Surer, B., Todo, S., Trebst, S., Troyer, M., Wall, M., Werner, P., & Wessel, S., (2011). The ALPS project release 2.0: open source software for strongly correlated systems. Journal of Statistical Mechanics: Theory and Experiment, 2011, P05001.
  • DiVincenzo & Uhlmann, A., (1999). Entanglement of Assistance. Quantum Computing and Quantum Communications, pp. 247-257.
  • Laustsen, T., Verstraete, F., & Van Enk, S., (2003). Local vs. Joint Measurements for the Entanglement of Assistance. Quantum Information and Computation, 3, 64-83.
  • Popp, M., Verstraete, F., Martin-Delgado, M., & Cirac, J., (2005). Localizable entanglement. Physical Review A, 71, 042306.
  • Todo, S., & Kato, K., (2001). Cluster Algorithms for General S Quantum Spin Systems. Physical Review Letters, 87, 047203.
  • Vedral, V., & Plenio, M., (1998). Entanglement measures and purification procedures. Physical Review A, 57, 1619-1633.
  • Qi, X., Gao, T., & Yan, F., (2017). Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems. Quantum Information Process, 16, 23.
  • Xue-Na Zhu, M., & Fei, S., (2018). A lower bound of concurrence for multipartite quantum systems. Quantum Information Processing, 17, 30.
  • Cornelio, M., (2013). Multipartite monogamy of the concurrence. Physical Review A, 87, 032330.
  • Evertz, H. G., Lana, G., & Marcu, M. (1993). Cluster algorithm for vertex models. Physical Review Letters, 70(7), 875.
  • Evertz, H. G., & Marcu, M. (1993). The loop-cluster algorithm for the case of the 6 vertex model. Nuclear Physics B-Proceedings Supplements, 30, 277–280.
  • Kawashima, N., Gubernatis, J. E., & Evertz, H. G. (1994). Loop algorithms for quantum simulations of fermion models on lattices. Physical Review B, 50(1), 136.
  • Sandvik, A. W. (1992). A generalization of Handscomb’s quantum Monte Carlo scheme-application to the 1D Hubbard model. Journal of Physics A: Mathematical and General, 25(13), 3667.
  • Sandvik, A. W. (1997). Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model. Physical Review B, 56(18), 11678.
  • Sandvik, A. W., & Kurkijärvi, J. (1991). Quantum Monte Carlo simulation method for spin systems. Physical Review B, 43(7), 5950.
  • Scalettar, R. T. (1998). World-line quantum Monte Carlo. Quantum Monte Carlo Methods in Physics and Chemistry, 525, 65.
  • Swendsen, R. H., & Wang, J.-S. (1987). Nonuniversal critical dynamics in Monte Carlo simulations. Physical Review Letters, 58(2), 86.
  • Fortuin, C. M. (1969). Physica (Utrecht) 57, 536 (1972); PW Kasteleyn and CM Fortuin. J. Phys. Soc. Jpn. Suppl, 26(11).
  • Fortuin, C. M., & Kasteleyn, P. W. (1972). On the random-cluster model: I. Introduction and relation to other models. Physica, 57(4), 536–564.
  • Duru, İ.P., & Aktaş, Ş. (2022). Dipole-Dipole Effect to Limits of Entanglement in Multipartite Spin Chain: A Monte Carlo Study. International Journal of Advances in Engineering and Pure Sciences, 34(2), 305-316. https://doi.org/10.7240/jeps.1032914

Monte Carlo simulation of distance dependent quantum entanglement in mixed XXZ Heisenberg spin-1/2 chains

Year 2024, Volume: 2 Issue: 2, 131 - 151, 27.09.2024

Abstract

The quantum entanglement of mixed XXZ Heisenberg spin-1/2 chain is examined. We quantify localizable entanglement (LE) in terms of upper/lower bounds through Quantum Monte Carlo simulations. Loop algorithm is chosen to numerically calculate thermodynamic quantities including spin-spin correlations. The exchange coupling, Zeeman energy, and dipolar interaction are literally taken into account. Findings summarize that the strength of dipole-dipole interaction (D) and external magnetic field (Bz) are notable in entanglement formation driving creation and extinction of entanglement. The creation and extinction of entanglement depend on D and Bz. Furthermore, strong fields at the critical temperatures lead a non-monotonic/monotonic behavior introducing revival phenomena. Nevertheless, strong D provides the distance-dependent stability of LE values, preserving unity.

Supporting Institution

Scientific Research Projects Commission of Marmara University

Project Number

FEN-C-DRP-120613-0273

Thanks

Authors thank Scientific Research Projects Commission of Marmara University due to its valuable support with a project number of FEN-C-DRP-120613-0273.

References

  • Modławska, J., & Grudka, A., (2008). Nonmaximally Entangled States Can Be Better for Multiple Linear Optical Teleportation. Physical Review Letters, 100, 110503.
  • Cavalcanti, D., Skrzypczyk, P., & Šupić, I., (2017).All Entangled States can Demonstrate Nonclassical Teleportation. Physical Review Letters, 119, 110501.
  • Z.A.Sabegh, R., & Mahmoudi, M., (2018). Spatially dependent atom-photon entanglement. Scientific Reports, 8, 13840.
  • Loss, D., & DiVincenzo, D., (1998). Quantum computation with quantum dots. Physical Review A, 57, 120.
  • Jürgen Audretsch (2007), The Quantum Computer. In Entangled Systems: New Directions in Quantum Physics (pp.219-245), Weinheim, Germany: John Wiley and Sons, Ltd.
  • Belsley, M. (2014). Introduction to Quantum Information Science, by Vlatko Vedral. Contemporary Physics, 55, 124.
  • DiVincenzo, D. (1997). Quantum computation and spin physics (invited). Journal of Applied Physics, 81, 4602-4607.
  • Zheng, S., & Guo, G., (2000). Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED. Physical Review Letters, 85, 2392-2395.
  • Bennett, C., & DiVincenzo, D., (2000). Quantum information and computation. Nature, 404, 1476-4687.
  • Eggert, S., Affleck, I., & Takahashi, M., (1994). Susceptibility of the spin 1/2 Heisenberg antiferromagnetic chain. Physical Review Letters, 73, 332-335.
  • Hammar, P., Stone, M., Reich, D., Broholm, C., Gibson, P., Turnbull, M., Landee, C., & Oshikawa, M., (1999). Characterization of a quasi-one-dimensional spin-1/2 magnet which is gapless and paramagnetic for g μ B H ≲ J and k_B T≪ J. Physical Review B, 59, 1008-1015.
  • Androvitsaneas, P., Fytas, N., Paspalakis, E., & Terzis, A.F., (2012). Quantum Monte Carlo simulations revisited: The case of anisotropic Heisenberg chains. Philosophical Magazine, 92, 4649-4656.
  • Barma, M., & Shastry, B., (1978). Classical equivalents of one-dimensional quantum-mechanical systems. Physical Review B, 18, 3351-3359.
  • Handscomb, D. (1964). A Monte Carlo method applied to the Heisenberg ferromagnet. Mathematical Proceedings of the Cambridge Philosophical Society, 60, 115-122.
  • Harada, K., & Kawashima, N., (2001). Loop Algorithm for Heisenberg Models with Biquadratic Interaction and Phase Transitions in Two Dimensions. Journal of the Physical Society of Japan, 70, 13-16.
  • Huang, Y., & Su, G., (2017). Quantum Monte Carlo study of the spin-1/2 honeycomb Heisenberg model with mixed antiferromagnetic and ferromagnetic interactions in external magnetic fields. Physical Review E, 95, 052147.
  • Sandvik, A., & Kurkijärvi, J., (1991). Quantum Monte Carlo simulation method for spin systems. Physical Review B, 43, 5950-5961.
  • Deger, C., Aksu, P., & Yildiz, F., (2016). Effect of Interdot Distance on Magnetic Behavior of 2-D Ni Dot Arrays. IEEE Transactions on Magnetics, 52, 1-4.
  • Duru, I., Değer, C., Kalaycı, T., & Arucu, M., (2015). A computational study on magnetic effects of Zn_(1-x) Cr_x O type diluted magnetic semiconductor. Journal of Magnetism and Magnetic Materials, 396 pp. 268-274.
  • Arnesen, M., Bose, S., & Vedral, V., (2001). Natural Thermal and Magnetic Entanglement in the 1D Heisenberg Model. Physical Review Letters, 87, 017901.
  • Marchukov, O.V., & Zinner, N., (2016). Quantum spin transistor with a Heisenberg spin chain. Nature Communications, 7, 13070.
  • Renes, J., Miyake, A., Brennen, G., & Bartlett, S., (2013). Holonomic quantum computing in symmetry-protected ground states of spin chains. New Journal of Physics, 15, 025020.
  • Apollaro, T., Lorenzo, S., Sindona, A., Paganelli, S., Giorgi, G., & Plastina, F., (2015). Many-qubit quantum state transfer via spin chains. Physica Scripta, T165 pp. 014036.
  • Wang, X., (2002). Threshold temperature for pairwise and many-particle thermal entanglement in the isotropic Heisenberg model. Physical Review A, 66, 044305.
  • Wang, X., (2001). Entanglement in the quantum Heisenberg XY model. Physical Review A, 64, 012313.
  • Rigolin, G., (2004). Thermal entanglement in the two-qubit Heisenberg XYZ model. International Journal of Quantum Information, 2, 393-405.
  • Androvitsaneas, P., Paspalakis, E., & Terzis, A., (2012). A quantum Monte Carlo study of the localizable entanglement in anisotropic ferromagnetic Heisenberg chains. Annals of Physics, 327, 212-223.
  • Sinyagin, A., Belov, A., Tang, Z., & Kotov, N., (2006). Monte Carlo Computer Simulation of Chain Formation from Nanoparticles. Journal of Physical Chemistry B, 110, 7500-7507.
  • Kim, I., (2013). Long-Range Entanglement is Necessary for a Topological Storage of Quantum Information. Physical Review Letters, 111, 080503.
  • Elman, S., Bartlett, S., & Doherty, A., (2017). Long-range entanglement for spin qubits via quantum Hall edge modes. Physical Review B, 96, 115407.
  • Bitko, D., Rosenbaum, T., & Aeppli, G., (1996). Quantum Critical Behavior for a Model Magnet. Physical Review Letters, 77, 940-943.
  • Chakraborty, P., Henelius, P., Kjønsberg, H., Sandvik, A., & Girvin, S., (2004). Theory of the magnetic phase diagram of LiHoF_4. Physical Review B, 70, 144411.
  • Bramwell, S., & Gingras, M., (2001). Spin Ice State in Frustrated Magnetic Pyrochlore Materials. Science, 294, 1495-1501.
  • Castelnovo, C. R., & Sondhi, S., (2008). Magnetic Monopoles in Spin Ice. Nature, 451, 42-45.
  • Mengotti, E., Heyderman, L., Bisig, A., Fraile Rodríguez, A., Le Guyader, L., Nolting, F., & Braun, H., (2009). Dipolar energy states in clusters of perpendicular magnetic nanoislands. Journal of Applied Physics, 105, 113113.
  • Lahaye, T., Menotti, C., Santos, L., Lewenstein, M., & Pfau, T., (2009). The physics of dipolar bosonic quantum gases. Reports on Progress in Physics. 72, 126401.
  • Peter, D., Müller, S., Wessel, S., & Büchler, H., (2012). Anomalous Behavior of Spin Systems with Dipolar Interactions. Physical Review Letters, 109, 025303.
  • Islam, R., Senko, C., Campbell, W., Korenblit, S., Smith, J., Lee, A., Edwards, E., Wang, C., Freericks, J., & Monroe, C., (2013). Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator. Science, 340, 583-587.
  • Jurcevic, P., & Roos, C., (2014). Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature, 511, 202-205.
  • Richerme, P., & Monroe, C., (2014). Non-local propagation of correlations in quantum systems with long-range interactions. Nature, j511 pp. 198-201.
  • Mahmoudian S., Rademaker L., Ralko A., Fratini S., & Dobrosavljevic V., (2015). Glassy Dynamics in Geometrically Frustrated Coulomb Liquids without Disorder. Physical Review Letters, 115, 025701.
  • Bohnet, J., Sawyer, B., Britton, J., Wall, M., Rey, A., Foss-Feig, M., & Bollinger, J., (2016). Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science, 352, 1297-1301.
  • Sahling, S., & Lorenzo, E., (2015). Experimental realization of long-distance entanglement between spins in antiferromagnetic quantum spin chains. Nature Physics, 15, 255-260.
  • Osborne, T., & Nielsen, M., (2002). Entanglement in a simple quantum phase transition. Physical Review A, 66, 032110.
  • Vidal, G., Latorre, J., Rico, E., & Kitaev, A., (2003). Entanglement in Quantum Critical Phenomena. Physical Review Letters, 90, 227902.
  • Bravo, B., Cabra, D., Gomez Albarracin, F., & Rossini, G., (2017). Long-range interactions in antiferromagnetic quantum spin chains. Physical Review B, 96, 054441.
  • Duru, I.P., & Aktas, S., (2019). Localizable entanglement of isotropic antiferromagnetic spin-1/2 chain. Turkish Journal of Physics. 43 pp. 272 - 279.
  • Bauer, B., Carr, L., Evertz, H., Feiguin, A., Freire, J., Fuchs, S., Gamper, L., Gukelberger, J., Gull, E., Guertler, S., Hehn, A., Igarashi, R., Isakov, S., Koop, D., Ma, P., Mates, P., Matsuo, H., Parcollet, O., Pawlowski, G., Picon, J., Pollet, L., Santos, E., Scarola, V., Schollwöck, U., Silva, C., Surer, B., Todo, S., Trebst, S., Troyer, M., Wall, M., Werner, P., & Wessel, S., (2011). The ALPS project release 2.0: open source software for strongly correlated systems. Journal of Statistical Mechanics: Theory and Experiment, 2011, P05001.
  • DiVincenzo & Uhlmann, A., (1999). Entanglement of Assistance. Quantum Computing and Quantum Communications, pp. 247-257.
  • Laustsen, T., Verstraete, F., & Van Enk, S., (2003). Local vs. Joint Measurements for the Entanglement of Assistance. Quantum Information and Computation, 3, 64-83.
  • Popp, M., Verstraete, F., Martin-Delgado, M., & Cirac, J., (2005). Localizable entanglement. Physical Review A, 71, 042306.
  • Todo, S., & Kato, K., (2001). Cluster Algorithms for General S Quantum Spin Systems. Physical Review Letters, 87, 047203.
  • Vedral, V., & Plenio, M., (1998). Entanglement measures and purification procedures. Physical Review A, 57, 1619-1633.
  • Qi, X., Gao, T., & Yan, F., (2017). Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems. Quantum Information Process, 16, 23.
  • Xue-Na Zhu, M., & Fei, S., (2018). A lower bound of concurrence for multipartite quantum systems. Quantum Information Processing, 17, 30.
  • Cornelio, M., (2013). Multipartite monogamy of the concurrence. Physical Review A, 87, 032330.
  • Evertz, H. G., Lana, G., & Marcu, M. (1993). Cluster algorithm for vertex models. Physical Review Letters, 70(7), 875.
  • Evertz, H. G., & Marcu, M. (1993). The loop-cluster algorithm for the case of the 6 vertex model. Nuclear Physics B-Proceedings Supplements, 30, 277–280.
  • Kawashima, N., Gubernatis, J. E., & Evertz, H. G. (1994). Loop algorithms for quantum simulations of fermion models on lattices. Physical Review B, 50(1), 136.
  • Sandvik, A. W. (1992). A generalization of Handscomb’s quantum Monte Carlo scheme-application to the 1D Hubbard model. Journal of Physics A: Mathematical and General, 25(13), 3667.
  • Sandvik, A. W. (1997). Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model. Physical Review B, 56(18), 11678.
  • Sandvik, A. W., & Kurkijärvi, J. (1991). Quantum Monte Carlo simulation method for spin systems. Physical Review B, 43(7), 5950.
  • Scalettar, R. T. (1998). World-line quantum Monte Carlo. Quantum Monte Carlo Methods in Physics and Chemistry, 525, 65.
  • Swendsen, R. H., & Wang, J.-S. (1987). Nonuniversal critical dynamics in Monte Carlo simulations. Physical Review Letters, 58(2), 86.
  • Fortuin, C. M. (1969). Physica (Utrecht) 57, 536 (1972); PW Kasteleyn and CM Fortuin. J. Phys. Soc. Jpn. Suppl, 26(11).
  • Fortuin, C. M., & Kasteleyn, P. W. (1972). On the random-cluster model: I. Introduction and relation to other models. Physica, 57(4), 536–564.
  • Duru, İ.P., & Aktaş, Ş. (2022). Dipole-Dipole Effect to Limits of Entanglement in Multipartite Spin Chain: A Monte Carlo Study. International Journal of Advances in Engineering and Pure Sciences, 34(2), 305-316. https://doi.org/10.7240/jeps.1032914
There are 67 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Articles
Authors

İzzet Paruğ Duru 0000-0002-9227-2497

Şahin Aktaş 0000-0003-3909-0456

Project Number FEN-C-DRP-120613-0273
Publication Date September 27, 2024
Submission Date April 30, 2024
Acceptance Date August 12, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

IEEE İ. P. Duru and Ş. Aktaş, “Monte Carlo simulation of distance dependent quantum entanglement in mixed XXZ Heisenberg spin-1/2 chains”, IJONFEST, vol. 2, no. 2, pp. 131–151, 2024.