Research Article
BibTex RIS Cite

Grupların esnek kesişim-yıldız çarpımı

Year 2025, Volume: 3 Issue: 2, 148 - 157, 28.09.2025
https://doi.org/10.61150/ijonfest.2025030205

Abstract

Esnek küme teorisi, epistemik belirsizlik, muğlaklık ve parametreye bağlı değişkenlik gibi olgularla karakterize edilen sistemlerin modellenmesine yönelik matematiksel olarak titiz ve cebirsel açıdan güçlü bir kuramsal çerçeve sunmaktadır. Bu tür belirsizlik ve varyasyonlar, karar kuramı, mühendislik, ekonomi ve bilgi bilimleri gibi disiplinlerin temelini oluşturan unsurlar arasında yer almaktadır. Bu kuramsal zemin üzerine inşa edilen mevcut çalışma, parametre kümeleri grup kuramsal yapılarla donatılmış esnek kümeler üzerinde tanımlanan yeni bir ikili işlem olan esnek kesişim–yıldız çarpımını tanıtmakta ve kapsamlı bir biçimde analiz etmektedir. Biçimsel tutarlılığa sahip aksiyomatik bir yapı içinde geliştirilen bu işlem, genelleştirilmiş esnek altkümelik ve esnek eşitlik kavramlarıyla uyumlu olacak şekilde kurgulanmıştır. Yürütülen cebirsel çözümleme, işlemin kapalılık, birleşme özelliği, değişme özelliği ve idempotentlik gibi temel yapısal özelliklerine göre ,ncelenmiştir. Ayrıca birim elemanın, ters elemanın ve yutan elemanın varlığı ya da yokluğu ayrıntılı biçimde incelenmiş; işlemin boş ve evrensel (mutlak) esnek kümelerle ilişkisi açık biçimde tanımlanmıştır. İşlemin anlamını daha iyi ortaya koymak amacıyla, literatürdeki önceki ikili esnek çarpım işlemleriyle karşılaştırmalı bir analiz yapılmış; önerilen yapının ifade gücü ve yapısal tutarlılığı, esnek altkümelik kavramlarının katmanlı hiyerarşisi içerisinde değerlendirilmiştir. Elde edilen bulgular, esnek kesişim–yıldız çarpımının, grup yapılı parametre kümelerinin dayattığı tüm aksiyomatik gereklilikleri sağladığını ve böylece esnek kümeler evreni üzerinde sağlam ve içsel olarak tutarlı bir cebirsel yapı oluşturduğunu göstermektedir. Çalışmanın iki temel katkısı öne çıkmaktadır: Birincisi, önerilen işlem, esnek küme teorisinin cebirsel araç dağarcığını biçimsel olarak tutarlı bir işlem çerçevesi içinde anlamlı şekilde genişletmektedir. İkincisi ise, grup yapısına sahip parametrelerle tanımlanan esnek kümelerin, soyut biçimde tanımlanmış işlemler aracılığıyla klasik grup davranışlarını andıran bir yapı sergilediği genelleştirilmiş bir esnek grup teorisinin temellerini atmaktadır. Kuramsal katkılarının ötesinde, önerilen çerçeve, soyut cebire dayalı esnek hesaplama modelleri için ilkesel bir temel sunmakta olup, bu modeller çok kriterli karar analizi, cebirsel sınıflandırma ve belirsizlik odaklı veri analitiği gibi uygulamalarda yüksek potansiyel taşımaktadır. Sonuç olarak, bu çalışma yalnızca esnek cebir kuramının teorik temellerini güçlendirmekle kalmayıp, aynı zamanda bu kuramın hem matematiksel araştırmalar hem de pratik hesaplama süreçleri açısından taşıdığı önemi vurgulamaktadır.

References

  • [1] Zadeh, L. A. (1965). Fuzzy sets. Information Control, 8(3), 338-353.
  • [2] Molodtsov, D. (1999). Soft set theory. Computers and Mathematics with Applications, 37(1), 19-31.
  • [3] Maji, P. K., Biswas, R. and Roy, A. R. (2003). Soft set theory. Computers and Mathematics with Application, 45(1), 555-562.
  • [4] Pei, D. and Miao, D. (2005). From soft sets to information systems, In: Proceedings of Granular Computing (Eds: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang) IEEE, 2, 617-621.
  • [5] Ali, M. I., Feng, F., Liu, X., Min, W. K. and Shabir, M. (2009). On some new operations in soft set theory. Computers and Mathematics with Applications, 57(9) 1547-1553.
  • [6] Yang, C. F. (2008). A note on: Soft set theory. Computers and Mathematics with Applications, 56(7), 1899-1900.
  • [7] Feng, F., Li, Y. M., Davvaz, B. and Ali, M. I. (2010). Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Computing, 14, 899-911.
  • [8] Jiang, Y., Tang, Y., Chen, Q., Wang, J. and Tang, S. (2010). Extending soft sets with description logics. Computers and Mathematics with Applications, 59(6), 2087-2096.
  • [9] Ali, M. I., Shabir, M. and Naz, M. (2011). Algebraic structures of soft sets associated with new operations. Computers and Mathematics with Applications, 61(9), 2647-2654.
  • [10] Neog, I.J and Sut, D.K. (2011). A new approach to the theory of softset, International Journal of Computer Applications, 32(2), 1-6.
  • [11] Fu, L. (2011). Notes on soft set operations, ARPN Journal of Systems and Software, 1, 205-208.
  • [12] Ge, X. and Yang, S. (2011). Investigations on some operations of soft sets, World Academy of Science, Engineering and Technology, 75, 1113-1116.
  • [13] Singh, D. and Onyeozili, I. A. (2012). Notes on soft matrices operations. ARPN Journal of Science and Technology, 2(9), 861-869.
  • [14] Singh, D. and Onyeozili, I. A.(2012). On some new properties on soft set operations. International Journal of Computer Applications, 59(4), 39-44.
  • [15] Singh, D. and Onyeozili, I. A. (2012). Some results on distributive and absorption properties on soft operations. IOSR Journal of Mathematics (IOSR-JM), 4(2), 18-30.
  • [16] Singh, D. and Onyeozili, I. A. (2012). Some conceptual misunderstanding of the fundamentals of soft set theory. ARPN Journal of Systems and Software, 2(9), 251-254.
  • [17] Zhu, P. and Wen, Q. (2013). Operations on soft sets revisited, Journal of Applied Mathematics, 2013, Article ID 105752, 7 pages.
  • [18] Onyeozili, I. A. and Gwary T. M. (2014). A study of the fundamentals of soft set theory, International Journal of Scientific & Technology Research, 3(4), 132-143.
  • [19] Sen, J. (2014).On algebraic structure of soft sets. Annals of Fuzzy Mathematics and Informatics, 7(6), 1013-1020.
  • [20] Eren, Ö. F. and Çalışıcı, H. (2019). On some operations of soft sets. The Fourth International Conference on Computational Mathematics and Engineering Sciences.
  • [21] Stojanovic, N. S. (2021). A new operation on soft sets: Extended symmetric difference of soft sets. Military Technical Courier, 69(4), 779-791.
  • [22] Sezgin, A., Aybek, F. N. and Atagün, A. O. (2023). A new soft set operation: Complementary soft binary piecewise intersection operation. Black Sea Journal of Engineering and Science, 6(4), 330-346.
  • [23] Sezgin, A., Aybek, F. N. and Güngör, N. B. (2023). A new soft set operation: Complementary soft binary piecewise union operation. Acta Informatica Malaysia, 7(1), 38-53.
  • [24] Sezgin, A. and Aybek, F. N. (2023). A new soft set operation: Complementary soft binary piecewise gamma operation. Matrix Science Mathematic, 7(1), 27-45.
  • [25] Sezgin, A. and Dagtoros, K. (2023). Complementary soft binary piecewise symmetric difference operation: A novel soft set operation. Scientific Journal of Mehmet Akif Ersoy University, 6(2), 31-45.
  • [26] Sezgin, A. and Demirci, A. M. (2023). A new soft set operation: Complementary soft binary piecewise star operation. Ikonion Journal of Mathematics, 5(2), 24-52.
  • [27] Sezgin, A. and Çalışıcı, H. (2024). A comprehensive study on soft binary piecewise difference operation, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B- Teorik Bilimler, 12(1), 1-23.
  • [28] Sezgin, A. and Yavuz, E. (2023). A new soft set operation: Soft binary piecewise symmetric difference operation. Necmettin Erbakan University Journal of Science and Engineering, 5(2), 150-168.
  • [29] Sezgin, A. and Yavuz, E. (2023). A new soft set operation: Complementary soft binary piecewise lambda operation. Sinop University Journal of Natural Sciences, 8(2), 101-133.
  • [30] Sezgin, A. and Yavuz, E. (2024). Soft binary piecewise plus operation: A new type of operation for soft sets, Uncertainty Discourse and Applications, 1(1), 79-100.
  • [31] Sezgin, A. and Çağman, N. (2024). A new soft set operation: Complementary soft binary piecewise difference operation. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 7(1), 1-37.
  • [32] Sezgin, A. and Çağman, N. (2025). An extensive study on restricted and extended symmetric difference operations of soft sets, Utilitas Mathematica. in press.
  • [33] Sezgin, A. and Sarıalioğlu, M. (2024) A new soft set operation: Complementary soft binary piecewise theta operation. Journal of Kadirli Faculty of Applied Sciences, 4(2), 325-357.
  • [34] Sezgin, A. and Sarıalioğlu, M. (2024) Complementary extended gamma operation: A new soft set operation, Natural and Applied Sciences Journal, 7(1),15-44.
  • [35] Sezgin, A. and Şenyiğit, E. (2025). A new product for soft sets with its decision-making: soft star-product. Big Data and Computing Visions, 5(1), 52-73.
  • [36] Qin, K. and Hong, Z. (2010). On soft equality. Journal of Computational and Applied Mathematics, 234(5), 1347-1355.
  • [37] Jun, Y. B. and Yang, X. (2011). A note on the paper combination of interval-valued fuzzy set and soft set. Computers and Mathematics with Applications, 61(5), 1468-1470.
  • [38] Liu, X., Feng, F. and Jun, Y. B. (2012). A note on generalized soft equal relations. Computers and Mathematics with Applications, 64(4), 572-578.
  • [39] Feng, F. and Li, Y. (2013). Soft subsets and soft product operations. Information Sciences, 232(20), 44-57.
  • [40] Abbas, M., Ali, B. and Romaguera, S. (2014). On generalized soft equality and soft lattice structure. Filomat, 28(6), 1191-1203.
  • [41] Abbas, M., Ali, M. I. and Romaguera, S. (2017). Generalized operations in soft set theory via relaxed conditions on parameters. Filomat, 31(19), 5955-5964.
  • [42] Al-shami, T. M. (2019). Investigation and corrigendum to some results related to g-soft equality and gf -soft equality relations. Filomat, 33(11), 3375-3383.
  • [43] Al-shami, T. M. and El-Shafei, M. (2020). T-soft equality relation. Turkish Journal of Mathematics, 44(4), 1427-1441.
  • [44] Çağman, N. and Enginoğlu, S. (2010). Soft set theory and uni-int decision making. European Journal of Operational Research, 207(2), 848-855.
  • [45] Sezer, A. S. (2012). A new view to ring theory via soft union rings, ideals and bi-ideals. Knowledge-Based Systems, 36, 300–314.
  • [46] Sezgin, A. (2016). A new approach to semigroup theory I: Soft union semigroups, ideals and bi-ideals. Algebra Letters, 2016, 3, 1-46.
  • [47] Muştuoğlu, E., Sezgin, A., and Türk, Z.K.(2016). Some characterizations on soft uni-groups and normal soft uni-groups. International Journal of Computer Applications, 155(10), 1-8.
  • [48] Kaygisiz, K. (2012). On soft int-groups. Annals of Fuzzy Mathematics and Informatics, 4(2), 363–375.
  • [49] Sezer, A. S., Çağman, N., Atagün, A. O., Ali, M. I. and Türkmen, E. (2015). Soft intersection semigroups, ideals and bi-Ideals; A New application on semigroup theory I. Filomat, 29(5), 917-946.
  • [50] Sezgin, A., Çağman, N. and Atagün, A. O. (2017). A completely new view to soft intersection rings via soft uni-int product, Applied Soft Computing, 54, 366-392.
  • [51] Sezgin, A., Durak, İ. and Ay, Z. (2025). Some new classifications of soft subsets and soft equalities with soft symmetric difference-difference product of groups. Amesia, 6(1), 16-32.
  • [52] Aktas, H. and Çağman, N. (2007). Soft sets and soft groups. Information Science, 177(13), 2726-2735.
  • [53] Feng, F., Jun, Y. B. and Zhao, X. (2008). Soft semirings. Computers and Mathematics with Applications, 56(10), 2621-2628.
  • [54] Ali, M. I., Mahmood, M., Rehman, M.U. and Aslam, M. F. (2015). On lattice ordered soft sets, Applied Soft Computing, 36, 499-505.
  • [55] Atagün, A.O., Kamacı, H., Taştekin, İ. and Sezgin, A. (2019). P-properties in near-rings. Journal of Mathematical and Fundamental Sciences, 51(2), 152-167.
  • [56] Atagün, A. O. and Sezer, A. S. (2015). Soft sets, soft semimodules and soft substructures of semimodules. Mathematical Sciences Letters, 4(3), 235-242.
  • [57] Atagün, A. O. and Sezgin, A. (2015). Soft subnear-rings, soft ideals and soft N-subgroups of near-rings, Mathematical Sciences Letters, 7(1), 37-42.
  • [58] Atagün, A.O. and Sezgin, A. (2017). Int-soft substructures of groups and semirings with applications, Applied Mathematics & Information Sciences, 11(1), 105-113.
  • [59] Atagün, A. O. and Sezgin, A. (2018). A new view to near-ring theory: Soft near-rings, South East Asian Journal of Mathematics & Mathematical Sciences, 14(3), 1-14.
  • [60] Atagün, A. O. and Sezgin, A. (2022). More on prime, maximal and principal soft ideals of soft rings. New mathematics and natural computation, 18(1), 195-207.
  • [61] Ali, B., Saleem, N., Sundus, N., Khaleeq, S., Saeed, M. and George, R. (2022). A contribution to the theory of soft sets via generalized relaxed operations. Mathematics, 10(15), 26-36.
  • [62] Gulistan, M., Shahzad, M. (2014). On soft KU-algebras, Journal of Algebra, Number Theory: Advances and Applications, 11(1), 1-20.
  • [63] Sezer, A. S. and Atagün, A. O. (2016). A new kind of vector space: soft vector space, Southeast Asian Bulletin of Mathematics, 40(5), 753-770.
  • [64] Sezer, A., Atagün, A. O. and Çağman, N. (2017). N-group SI-action and its applications to N-group theory, Fasciculi Mathematici, 52, 139-153.
  • [65] Sezer, A., Atagün, A. O. and Çağman, N. (2013). A new view to N-group theory: soft N-groups, Fasciculi Mathematici, 51, 123-140.
  • [66]Sezer, A. S., Çağman, N. and Atagün, A. O. (2014). Soft intersection interior ideals, quasi-ideals and generalized bi-ideals; A new approach to semigroup theory II. J. Multiple-Valued Logic and Soft Computing, 23(1-2), 161-207.
  • [67] Ullah, A., Karaaslan, F. and Ahmad, I. (2018). Soft uni-abel-grassmann's groups. European Journal of Pure and Applied Mathematics, 11(2), 517-536.
  • [68] Gulistan, M., Feng, F., Khan, M., and Sezgin, A. (2018). Characterizations of right weakly regular semigroups in terms of generalized cubic soft sets. Mathematics, No: 6, 293.
  • [69] Jana, C., Pal, M., Karaaslan, F. and Sezgin, A. (2019). (α, β)-soft intersectional rings and ideals with their applications. New Mathematics and Natural Computation, 15(2), 333–350.
  • [70] Karaaslan, F. (2019). Some properties of AG*-groupoids and AG-bands under SI-product Operation. Journal of Intelligent and Fuzzy Systems, 36(1), 231-239.
  • [71] Khan, M., Ilyas, F., Gulistan, M. and Anis, S. (2015). A study of soft AG-groupoids, Annals of Fuzzy Mathematics and Informatics, 9(4), 621–638.
  • [72] Khan, A., Izhar, I., & Sezgin, A. (2017). Characterizations of Abel Grassmann's Groupoids by the properties of their double-framed soft ideals, International Journal of Analysis and Applications, 15(1), 62-74.
  • [73] Mahmood, T., Waqas, A., and Rana, M. A.(2015). Soft intersectional ideals in ternary semiring. Science International, 27(5), 3929-3934.
  • [74] Sezgin, A., Shahzad, A. and Mehmood, A. (2019). A new operation on soft sets: Extended difference of soft sets. Journal of New Theory, 27, 33-42.
  • [75] Sezgin, A., Onur, B. and İlgin, A. (2024). Soft intersection almost tri-ideals of semigroups. SciNexuses, 1, 126-138.
  • [76] Memiş, S.(2022). Another view on picture fuzzy soft sets and their product operations with soft decision-making. Journal of New Theory, 38, 1-13.
  • [77] Sezgin, A., Atagün, A. O., Çağman, N. and Demir, H. (2022). On near-rings with soft union ideals and applications. New Mathematics and Natural Computation, 18(2), 495-511.
  • [78] Sezgin, A., Çağman, N., and Çıtak, F. (2019). α-inclusions applied to group theory via soft set and logic. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 334-352.
  • [79] Alcantud, J.C.R. and Khameneh, A.Z., Santos-García, G. and Akram, M. (2024). A systematic literature review of soft set theory. Neural Computing and Applications, 36, 8951–8975.
  • [80] Sezgin, A. and İlgin, A. (2024). Soft intersection almost subsemigroups of semigroups. International Journal of Mathematics and Physics, 15(1), 13-20.
  • [81] Özlü, Ş. and Sezgin, A. (2020). Soft covered ideals in semigroups. Acta Universitatis Sapientiae Mathematica, 12(2), 317-346.
  • [82] Sezgin, A. and Onur, B. (2024). Soft intersection almost bi-ideals of semigroups. Systemic Analytics, 2(1), 95-105.
  • [83] Riaz, M., Hashmi, M. R., Karaaslan, F., Sezgin, A., Shamiri, M. M. A. A. and Khalaf, M. M. (2023). Emerging trends in social networking systems and generation gap with neutrosophic crisp soft mapping. CMES-computer modeling in engineering and sciences, 136(2), 1759-1783.
  • [84] Sezgin, A. and Orbay, M. (2022). Analysis of semigroups with soft intersection ideals, Acta Universitatis Sapientiae, Mathematica, 14(2), 166-210.
  • [85] Manikantan, T., Ramasany, P., and Sezgin, A. (2023). Soft quasi-ideals of soft near-rings, Sigma Journal of Engineering and Natural Science, 41(3), 565-574.
  • [86] Sezgin, A., Çağman, N., Atagün, A. O. and Aybek, F. N. (2023). Complemental binary operations of sets and their application to group theory. Matrix Science Mathematic, 7(2), 99-106.
  • [87] Mahmood, T., Rehman, Z. U., and Sezgin, A. (2018). Lattice ordered soft near rings. Korean Journal of Mathematics, 26(3), 503-517.
  • [88] Sezgin, A., Yavuz, E. and Özlü, Ş. (2024). Insight into soft binary piecewise lambda operation: a new operation for soft sets. Journal of Umm al-Qura University for Applied Sciences, 1-15.
  • [89] Sezgin, A. and İlgin, A. (2024). Soft intersection almost ideals of semigroups. Journal of Innovative Engineering and Natural Science, 4(2), 466-481.
  • [90] Sezgin, A., Atagün, A. O and Çağman N. (2025). A complete study on and-product of soft sets. Sigma Journal of Engineering and Natural Sciences, 43(1), 1−14.

Soft Intersection-star Product of Groups

Year 2025, Volume: 3 Issue: 2, 148 - 157, 28.09.2025
https://doi.org/10.61150/ijonfest.2025030205

Abstract

Soft set theory provides a mathematically rigorous and algebraically expressive framework for modeling systems characterized by epistemic uncertainty, vagueness, and parameter-dependent variability—phenomena central to decision theory, engineering, economics, and information science. Expanding on this foundation, the present study introduces and examines a novel binary operation, the soft intersection–star product, defined over soft sets with parameter domains possessing intrinsic group-theoretic structures. Developed within a formally consistent, axiomatic framework, this operation aligns with generalized concepts of soft subsethood and soft equality. A comprehensive algebraic analysis is on the operation’s core properties—closure, associativity, commutativity, and idempotency. The presence or absence of identity, inverse, and absorbing elements, and the soft product’s behavior concerning the null and absolute soft sets, are precisely delineated. To contextualize the operation, a comparative analysis with prior binary soft products is conducted, elucidating its expressive capacity and structural coherence within the layered hierarchy of soft subset classifications. The findings demonstrate that the soft in-tersection–star product satisfies all axiomatic requirements imposed by group-parameterized domains, thereby inducing a robust and internally consistent algebraic structure on the space of soft sets. Two key contributions emerge: first, the operation substantially extends the algebraic toolkit of soft set theory within a rigorous opera-tional framework; second, it lays the foundation for a generalized soft group theory, wherein soft sets indexed by group-structured parameters mimic classical group behavior through abstractly defined soft operations. Beyond its theoretical value, the proposed framework offers a principled basis for soft computational modeling grounded in abstract algebra. Such models are highly applicable to multi-criteria decision analysis, algebraic classification, and uncertainty-sensitive data analytics. Hence, this study not only strengthens the theoretical foundations of soft algebra but also reinforces its relevance to both mathematical research and practical computation.

References

  • [1] Zadeh, L. A. (1965). Fuzzy sets. Information Control, 8(3), 338-353.
  • [2] Molodtsov, D. (1999). Soft set theory. Computers and Mathematics with Applications, 37(1), 19-31.
  • [3] Maji, P. K., Biswas, R. and Roy, A. R. (2003). Soft set theory. Computers and Mathematics with Application, 45(1), 555-562.
  • [4] Pei, D. and Miao, D. (2005). From soft sets to information systems, In: Proceedings of Granular Computing (Eds: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang) IEEE, 2, 617-621.
  • [5] Ali, M. I., Feng, F., Liu, X., Min, W. K. and Shabir, M. (2009). On some new operations in soft set theory. Computers and Mathematics with Applications, 57(9) 1547-1553.
  • [6] Yang, C. F. (2008). A note on: Soft set theory. Computers and Mathematics with Applications, 56(7), 1899-1900.
  • [7] Feng, F., Li, Y. M., Davvaz, B. and Ali, M. I. (2010). Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Computing, 14, 899-911.
  • [8] Jiang, Y., Tang, Y., Chen, Q., Wang, J. and Tang, S. (2010). Extending soft sets with description logics. Computers and Mathematics with Applications, 59(6), 2087-2096.
  • [9] Ali, M. I., Shabir, M. and Naz, M. (2011). Algebraic structures of soft sets associated with new operations. Computers and Mathematics with Applications, 61(9), 2647-2654.
  • [10] Neog, I.J and Sut, D.K. (2011). A new approach to the theory of softset, International Journal of Computer Applications, 32(2), 1-6.
  • [11] Fu, L. (2011). Notes on soft set operations, ARPN Journal of Systems and Software, 1, 205-208.
  • [12] Ge, X. and Yang, S. (2011). Investigations on some operations of soft sets, World Academy of Science, Engineering and Technology, 75, 1113-1116.
  • [13] Singh, D. and Onyeozili, I. A. (2012). Notes on soft matrices operations. ARPN Journal of Science and Technology, 2(9), 861-869.
  • [14] Singh, D. and Onyeozili, I. A.(2012). On some new properties on soft set operations. International Journal of Computer Applications, 59(4), 39-44.
  • [15] Singh, D. and Onyeozili, I. A. (2012). Some results on distributive and absorption properties on soft operations. IOSR Journal of Mathematics (IOSR-JM), 4(2), 18-30.
  • [16] Singh, D. and Onyeozili, I. A. (2012). Some conceptual misunderstanding of the fundamentals of soft set theory. ARPN Journal of Systems and Software, 2(9), 251-254.
  • [17] Zhu, P. and Wen, Q. (2013). Operations on soft sets revisited, Journal of Applied Mathematics, 2013, Article ID 105752, 7 pages.
  • [18] Onyeozili, I. A. and Gwary T. M. (2014). A study of the fundamentals of soft set theory, International Journal of Scientific & Technology Research, 3(4), 132-143.
  • [19] Sen, J. (2014).On algebraic structure of soft sets. Annals of Fuzzy Mathematics and Informatics, 7(6), 1013-1020.
  • [20] Eren, Ö. F. and Çalışıcı, H. (2019). On some operations of soft sets. The Fourth International Conference on Computational Mathematics and Engineering Sciences.
  • [21] Stojanovic, N. S. (2021). A new operation on soft sets: Extended symmetric difference of soft sets. Military Technical Courier, 69(4), 779-791.
  • [22] Sezgin, A., Aybek, F. N. and Atagün, A. O. (2023). A new soft set operation: Complementary soft binary piecewise intersection operation. Black Sea Journal of Engineering and Science, 6(4), 330-346.
  • [23] Sezgin, A., Aybek, F. N. and Güngör, N. B. (2023). A new soft set operation: Complementary soft binary piecewise union operation. Acta Informatica Malaysia, 7(1), 38-53.
  • [24] Sezgin, A. and Aybek, F. N. (2023). A new soft set operation: Complementary soft binary piecewise gamma operation. Matrix Science Mathematic, 7(1), 27-45.
  • [25] Sezgin, A. and Dagtoros, K. (2023). Complementary soft binary piecewise symmetric difference operation: A novel soft set operation. Scientific Journal of Mehmet Akif Ersoy University, 6(2), 31-45.
  • [26] Sezgin, A. and Demirci, A. M. (2023). A new soft set operation: Complementary soft binary piecewise star operation. Ikonion Journal of Mathematics, 5(2), 24-52.
  • [27] Sezgin, A. and Çalışıcı, H. (2024). A comprehensive study on soft binary piecewise difference operation, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B- Teorik Bilimler, 12(1), 1-23.
  • [28] Sezgin, A. and Yavuz, E. (2023). A new soft set operation: Soft binary piecewise symmetric difference operation. Necmettin Erbakan University Journal of Science and Engineering, 5(2), 150-168.
  • [29] Sezgin, A. and Yavuz, E. (2023). A new soft set operation: Complementary soft binary piecewise lambda operation. Sinop University Journal of Natural Sciences, 8(2), 101-133.
  • [30] Sezgin, A. and Yavuz, E. (2024). Soft binary piecewise plus operation: A new type of operation for soft sets, Uncertainty Discourse and Applications, 1(1), 79-100.
  • [31] Sezgin, A. and Çağman, N. (2024). A new soft set operation: Complementary soft binary piecewise difference operation. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 7(1), 1-37.
  • [32] Sezgin, A. and Çağman, N. (2025). An extensive study on restricted and extended symmetric difference operations of soft sets, Utilitas Mathematica. in press.
  • [33] Sezgin, A. and Sarıalioğlu, M. (2024) A new soft set operation: Complementary soft binary piecewise theta operation. Journal of Kadirli Faculty of Applied Sciences, 4(2), 325-357.
  • [34] Sezgin, A. and Sarıalioğlu, M. (2024) Complementary extended gamma operation: A new soft set operation, Natural and Applied Sciences Journal, 7(1),15-44.
  • [35] Sezgin, A. and Şenyiğit, E. (2025). A new product for soft sets with its decision-making: soft star-product. Big Data and Computing Visions, 5(1), 52-73.
  • [36] Qin, K. and Hong, Z. (2010). On soft equality. Journal of Computational and Applied Mathematics, 234(5), 1347-1355.
  • [37] Jun, Y. B. and Yang, X. (2011). A note on the paper combination of interval-valued fuzzy set and soft set. Computers and Mathematics with Applications, 61(5), 1468-1470.
  • [38] Liu, X., Feng, F. and Jun, Y. B. (2012). A note on generalized soft equal relations. Computers and Mathematics with Applications, 64(4), 572-578.
  • [39] Feng, F. and Li, Y. (2013). Soft subsets and soft product operations. Information Sciences, 232(20), 44-57.
  • [40] Abbas, M., Ali, B. and Romaguera, S. (2014). On generalized soft equality and soft lattice structure. Filomat, 28(6), 1191-1203.
  • [41] Abbas, M., Ali, M. I. and Romaguera, S. (2017). Generalized operations in soft set theory via relaxed conditions on parameters. Filomat, 31(19), 5955-5964.
  • [42] Al-shami, T. M. (2019). Investigation and corrigendum to some results related to g-soft equality and gf -soft equality relations. Filomat, 33(11), 3375-3383.
  • [43] Al-shami, T. M. and El-Shafei, M. (2020). T-soft equality relation. Turkish Journal of Mathematics, 44(4), 1427-1441.
  • [44] Çağman, N. and Enginoğlu, S. (2010). Soft set theory and uni-int decision making. European Journal of Operational Research, 207(2), 848-855.
  • [45] Sezer, A. S. (2012). A new view to ring theory via soft union rings, ideals and bi-ideals. Knowledge-Based Systems, 36, 300–314.
  • [46] Sezgin, A. (2016). A new approach to semigroup theory I: Soft union semigroups, ideals and bi-ideals. Algebra Letters, 2016, 3, 1-46.
  • [47] Muştuoğlu, E., Sezgin, A., and Türk, Z.K.(2016). Some characterizations on soft uni-groups and normal soft uni-groups. International Journal of Computer Applications, 155(10), 1-8.
  • [48] Kaygisiz, K. (2012). On soft int-groups. Annals of Fuzzy Mathematics and Informatics, 4(2), 363–375.
  • [49] Sezer, A. S., Çağman, N., Atagün, A. O., Ali, M. I. and Türkmen, E. (2015). Soft intersection semigroups, ideals and bi-Ideals; A New application on semigroup theory I. Filomat, 29(5), 917-946.
  • [50] Sezgin, A., Çağman, N. and Atagün, A. O. (2017). A completely new view to soft intersection rings via soft uni-int product, Applied Soft Computing, 54, 366-392.
  • [51] Sezgin, A., Durak, İ. and Ay, Z. (2025). Some new classifications of soft subsets and soft equalities with soft symmetric difference-difference product of groups. Amesia, 6(1), 16-32.
  • [52] Aktas, H. and Çağman, N. (2007). Soft sets and soft groups. Information Science, 177(13), 2726-2735.
  • [53] Feng, F., Jun, Y. B. and Zhao, X. (2008). Soft semirings. Computers and Mathematics with Applications, 56(10), 2621-2628.
  • [54] Ali, M. I., Mahmood, M., Rehman, M.U. and Aslam, M. F. (2015). On lattice ordered soft sets, Applied Soft Computing, 36, 499-505.
  • [55] Atagün, A.O., Kamacı, H., Taştekin, İ. and Sezgin, A. (2019). P-properties in near-rings. Journal of Mathematical and Fundamental Sciences, 51(2), 152-167.
  • [56] Atagün, A. O. and Sezer, A. S. (2015). Soft sets, soft semimodules and soft substructures of semimodules. Mathematical Sciences Letters, 4(3), 235-242.
  • [57] Atagün, A. O. and Sezgin, A. (2015). Soft subnear-rings, soft ideals and soft N-subgroups of near-rings, Mathematical Sciences Letters, 7(1), 37-42.
  • [58] Atagün, A.O. and Sezgin, A. (2017). Int-soft substructures of groups and semirings with applications, Applied Mathematics & Information Sciences, 11(1), 105-113.
  • [59] Atagün, A. O. and Sezgin, A. (2018). A new view to near-ring theory: Soft near-rings, South East Asian Journal of Mathematics & Mathematical Sciences, 14(3), 1-14.
  • [60] Atagün, A. O. and Sezgin, A. (2022). More on prime, maximal and principal soft ideals of soft rings. New mathematics and natural computation, 18(1), 195-207.
  • [61] Ali, B., Saleem, N., Sundus, N., Khaleeq, S., Saeed, M. and George, R. (2022). A contribution to the theory of soft sets via generalized relaxed operations. Mathematics, 10(15), 26-36.
  • [62] Gulistan, M., Shahzad, M. (2014). On soft KU-algebras, Journal of Algebra, Number Theory: Advances and Applications, 11(1), 1-20.
  • [63] Sezer, A. S. and Atagün, A. O. (2016). A new kind of vector space: soft vector space, Southeast Asian Bulletin of Mathematics, 40(5), 753-770.
  • [64] Sezer, A., Atagün, A. O. and Çağman, N. (2017). N-group SI-action and its applications to N-group theory, Fasciculi Mathematici, 52, 139-153.
  • [65] Sezer, A., Atagün, A. O. and Çağman, N. (2013). A new view to N-group theory: soft N-groups, Fasciculi Mathematici, 51, 123-140.
  • [66]Sezer, A. S., Çağman, N. and Atagün, A. O. (2014). Soft intersection interior ideals, quasi-ideals and generalized bi-ideals; A new approach to semigroup theory II. J. Multiple-Valued Logic and Soft Computing, 23(1-2), 161-207.
  • [67] Ullah, A., Karaaslan, F. and Ahmad, I. (2018). Soft uni-abel-grassmann's groups. European Journal of Pure and Applied Mathematics, 11(2), 517-536.
  • [68] Gulistan, M., Feng, F., Khan, M., and Sezgin, A. (2018). Characterizations of right weakly regular semigroups in terms of generalized cubic soft sets. Mathematics, No: 6, 293.
  • [69] Jana, C., Pal, M., Karaaslan, F. and Sezgin, A. (2019). (α, β)-soft intersectional rings and ideals with their applications. New Mathematics and Natural Computation, 15(2), 333–350.
  • [70] Karaaslan, F. (2019). Some properties of AG*-groupoids and AG-bands under SI-product Operation. Journal of Intelligent and Fuzzy Systems, 36(1), 231-239.
  • [71] Khan, M., Ilyas, F., Gulistan, M. and Anis, S. (2015). A study of soft AG-groupoids, Annals of Fuzzy Mathematics and Informatics, 9(4), 621–638.
  • [72] Khan, A., Izhar, I., & Sezgin, A. (2017). Characterizations of Abel Grassmann's Groupoids by the properties of their double-framed soft ideals, International Journal of Analysis and Applications, 15(1), 62-74.
  • [73] Mahmood, T., Waqas, A., and Rana, M. A.(2015). Soft intersectional ideals in ternary semiring. Science International, 27(5), 3929-3934.
  • [74] Sezgin, A., Shahzad, A. and Mehmood, A. (2019). A new operation on soft sets: Extended difference of soft sets. Journal of New Theory, 27, 33-42.
  • [75] Sezgin, A., Onur, B. and İlgin, A. (2024). Soft intersection almost tri-ideals of semigroups. SciNexuses, 1, 126-138.
  • [76] Memiş, S.(2022). Another view on picture fuzzy soft sets and their product operations with soft decision-making. Journal of New Theory, 38, 1-13.
  • [77] Sezgin, A., Atagün, A. O., Çağman, N. and Demir, H. (2022). On near-rings with soft union ideals and applications. New Mathematics and Natural Computation, 18(2), 495-511.
  • [78] Sezgin, A., Çağman, N., and Çıtak, F. (2019). α-inclusions applied to group theory via soft set and logic. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 334-352.
  • [79] Alcantud, J.C.R. and Khameneh, A.Z., Santos-García, G. and Akram, M. (2024). A systematic literature review of soft set theory. Neural Computing and Applications, 36, 8951–8975.
  • [80] Sezgin, A. and İlgin, A. (2024). Soft intersection almost subsemigroups of semigroups. International Journal of Mathematics and Physics, 15(1), 13-20.
  • [81] Özlü, Ş. and Sezgin, A. (2020). Soft covered ideals in semigroups. Acta Universitatis Sapientiae Mathematica, 12(2), 317-346.
  • [82] Sezgin, A. and Onur, B. (2024). Soft intersection almost bi-ideals of semigroups. Systemic Analytics, 2(1), 95-105.
  • [83] Riaz, M., Hashmi, M. R., Karaaslan, F., Sezgin, A., Shamiri, M. M. A. A. and Khalaf, M. M. (2023). Emerging trends in social networking systems and generation gap with neutrosophic crisp soft mapping. CMES-computer modeling in engineering and sciences, 136(2), 1759-1783.
  • [84] Sezgin, A. and Orbay, M. (2022). Analysis of semigroups with soft intersection ideals, Acta Universitatis Sapientiae, Mathematica, 14(2), 166-210.
  • [85] Manikantan, T., Ramasany, P., and Sezgin, A. (2023). Soft quasi-ideals of soft near-rings, Sigma Journal of Engineering and Natural Science, 41(3), 565-574.
  • [86] Sezgin, A., Çağman, N., Atagün, A. O. and Aybek, F. N. (2023). Complemental binary operations of sets and their application to group theory. Matrix Science Mathematic, 7(2), 99-106.
  • [87] Mahmood, T., Rehman, Z. U., and Sezgin, A. (2018). Lattice ordered soft near rings. Korean Journal of Mathematics, 26(3), 503-517.
  • [88] Sezgin, A., Yavuz, E. and Özlü, Ş. (2024). Insight into soft binary piecewise lambda operation: a new operation for soft sets. Journal of Umm al-Qura University for Applied Sciences, 1-15.
  • [89] Sezgin, A. and İlgin, A. (2024). Soft intersection almost ideals of semigroups. Journal of Innovative Engineering and Natural Science, 4(2), 466-481.
  • [90] Sezgin, A., Atagün, A. O and Çağman N. (2025). A complete study on and-product of soft sets. Sigma Journal of Engineering and Natural Sciences, 43(1), 1−14.
There are 90 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Articles
Authors

İbrahim Durak 0009-0002-7838-078X

Aslıhan Sezgin 0000-0002-1519-7294

Publication Date September 28, 2025
Submission Date June 25, 2025
Acceptance Date September 16, 2025
Published in Issue Year 2025 Volume: 3 Issue: 2

Cite

IEEE İ. Durak and A. Sezgin, “Soft Intersection-star Product of Groups”, IJONFEST, vol. 3, no. 2, pp. 148–157, 2025, doi: 10.61150/ijonfest.2025030205.