Research Article
BibTex RIS Cite
Year 2022, , 142 - 150, 01.03.2022
https://doi.org/10.5541/ijot.1017282

Abstract

References

  • IIR, “The Role of Refrigeration in the Global Economy,” 2015. Online].Available:https://www.scribd.com/document/452307076/NoteTech-29-EN-2-pdf.
  • European Commission, “Regulation (EU) No 517/2014 of The European Parliament and of the council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006,” 2014.
  • A.Mota-Babiloni et al., “Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact,”Int.J.Refrig., vol.111,pp.147–158,Mar.2020,doi: 10.1016/J.IJREFRIG.2019.11.016.
  • H. Yamaguchi, X.-D. Niu, K. Sekimoto, and P. Nekså, “Investigation of dry ice blockage in an ultra-low temperature cascade refrigeration system using CO2 as a working fluid,” Int. J. Refrig., vol. 34, no. 2, pp. 466–475, Mar. 2011, doi: 10.1016/J.IJREFRIG.2010.11.001.
  • K. Megdouli, B. M. Tashtoush, E. Nahdi, M. Elakhdar, L. Kairouani, and A. Mhimid, “Thermodynamic analysis of a novel ejector-cascade refrigeration cycles for freezing process applications and air-conditioning,” Int. J. Refrig., vol. 70, pp. 108–118, Oct. 2016, doi: 10.1016/J.IJREFRIG.2016.06.029.
  • J. Lee, C. Lee, S. Baek, and S. Jeong, “Investigation of ejector-equipped Joule–Thomson refrigerator operating below 77 K,” Int. J. Refrig., vol. 78, pp. 93–107, Jun. 2017, doi: 10.1016/J.IJREFRIG.2017.03.016.
  • H. C. Wang, G. F. Chen, X. Q. Dong, Y. X. Zhao, H. Guo, and M. Q. Gong, “Performance comparison of single-stage mixed-refrigerant Joule–Thomson cycle and pure-gas reverse Brayton cycle at fixed-temperatures from 80 to 180 K,” Int. J. Refrig., vol. 80, pp. 77–91, Aug. 2017, doi: 10.1016/J.IJREFRIG.2017.05.011.
  • A. Biglia et al., “Reversed Brayton cycle for food freezing at very low temperatures: Energy performance and optimisation,” Int. J. Refrig., vol. 81, pp. 82–95, Sep. 2017, doi: 10.1016/J.IJREFRIG.2017.05.022.
  • Z. Hongli, H. Yu, and C. Liang, “Experimental study on a small Brayton air refrigerator under −120 °C,” Appl. Therm. Eng., vol. 29, no. 8–9, pp. 1702–1706, Jun. 2009, doi: 10.1016/J.APPLTHERMALENG.2008.07.028.
  • L. H. P. Massuchetto, R. B. C. do Nascimento, S. M. R. de Carvalho, H. V. de Araújo, and J. V. H. d’Angelo, “Thermodynamic performance evaluation of a cascade refrigeration system with mixed refrigerants: R744/R1270, R744/R717 and R744/RE170,” Int. J. Refrig., vol. 106, pp. 201–212, Oct. 2019, doi: 10.1016/J.IJREFRIG.2019.07.005.
  • D. Yılmaz, Ü. Sınar, A. Özyurt, B. Yılmaz, and E. Mancuhan, “Numerical Investigation of Performance Effects of Excessive Cooling and Heating in a Two-Stage Cooling System Operating at Ultra Low Temperatures,” Afyon Kocatepe Univ. J. Sci. Eng., vol. 17, pp. 1172–1180, 2017, doi: 10.5578/fmbd.66304.
  • A. M. Dubey, S. Kumar, and G. Das Agrawal, “Thermodynamic analysis of a transcritical CO2/propylene (R744-R1270) cascade system for cooling and heating applications,” Energy Convers. Manag., vol. 86, pp. 774–783, 2014, doi: 10.1016/j.enconman.2014.05.105.
  • P. Bansal, “A review - Status of CO 2 as a low temperature refrigerant: Fundamentals and R&D opportunities,” Appl. Therm. Eng., vol. 41, pp. 18–29, 2012, doi: 10.1016/j.applthermaleng.2011.12.006.
  • B. Niu and Y. Zhang, “Experimental study of the refrigeration cycle performance for the R744/R290 mixtures,” Int. J. Refrig., vol. 30, no. 1, pp. 37–42, Jan. 2007, doi: 10.1016/J.IJREFRIG.2006.06.002.
  • K. K. Singh, R. Kumar, and A. Gupta, “Multi-objective Optimization of Thermodynamic and Economic Performances of Natural Refrigerants for Cascade Refrigeration,” Arab. J. Sci. Eng., vol. 46, no. 12, pp. 12235–12252, 2021, doi: 10.1007/s13369-021-05924-w.
  • Y. D. Zhu, Z. R. Peng, G. B. Wang, and X. R. Zhang, “Thermodynamic analysis of a novel multi-target-temperature cascade cycle for refrigeration,” Energy Convers. Manag., vol. 243, no. March, p. 114380, 2021, doi: 10.1016/j.enconman.2021.114380.
  • V. Adebayo, M. Abid, M. Adedeji, M. Dagbasi, and O. Bamisile, “Comparative thermodynamic performance analysis of a cascade refrigeration system with new refrigerants paired with CO2,” Appl. Therm. Eng., vol. 184, p. 116286, 2021, doi: 10.1016/j.applthermaleng.2020.116286.
  • K. Golbaten Mofrad, S. Zandi, G. Salehi, and M. H. Khoshgoftar Manesh, “4E analyses and multi-objective optimization of cascade refrigeration cycles with heat recovery system,” Therm. Sci. Eng. Prog., vol. 19, p. 100613, 2020, doi: 10.1016/j.tsep.2020.100613.
  • M. Pan, H. Zhao, D. Liang, Y. Zhu, Y. Liang, and G. Bao, “A review of the cascade refrigeration system,” Energies, vol. 13, no. 9, 2020, doi: 10.3390/en13092254.
  • E. Gholamian, P. Hanafizadeh, and P. Ahmadi, “Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system,” Appl. Therm. Eng., vol. 137, no. October 2017, pp. 689–699, 2018, doi: 10.1016/j.applthermaleng.2018.03.055.
  • A. H. Mosaffa, L. G. Farshi, C. A. Infante Ferreira, and M. A. Rosen, “Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers,” Energy Convers. Manag., vol. 117, pp. 442–453, 2016, doi: 10.1016/j.enconman.2016.03.053.
  • M. Aminyavari, B. Najafi, A. Shirazi, and F. Rinaldi, “Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system,” Appl. Therm. Eng., vol. 65, no. 1–2, pp. 42–50, 2014, doi: 10.1016/j.applthermaleng.2013.12.075.
  • J. Alberto Dopazo, J. Fernández-Seara, J. Sieres, and F. J. Uhía, “Theoretical analysis of a CO2-NH3 cascade refrigeration system for cooling applications at low temperatures,” Appl. Therm. Eng., vol. 29, no. 8–9, pp. 1577–1583, 2009, doi: 10.1016/j.applthermaleng.2008.07.006.
  • W. Bingming, W. Huagen, L. Jianfeng, and X. Ziwen, “Experimental investigation on the performance of NH3/CO2 cascade refrigeration system with twin-screw compressor,” Int. J. Refrig., vol. 32, no. 6, pp. 1358–1365, 2009, doi: 10.1016/j.ijrefrig.2009.03.008.
  • H. M. Getu and P. K. Bansal, “Thermodynamic analysis of an R744-R717 cascade refrigeration system,” Int. J. Refrig., vol. 31, no. 1, pp. 45–54, 2008, doi: 10.1016/j.ijrefrig.2007.06.014.
  • T. S. Lee, C. H. Liu, and T. W. Chen, “Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems,” Int. J. Refrig., vol. 29, no. 7, pp. 1100–1108, 2006, doi: 10.1016/j.ijrefrig.2006.03.003.
  • G. Di Nicola, G. Giuliani, F. Polonara, and R. Stryjek, “Blends of carbon dioxide and HFCs as working fluids for the low-temperature circuit in cascade refrigerating systems,” Int. J. Refrig., vol. 28, no. 2, pp. 130–140, 2005, doi: 10.1016/j.ijrefrig.2004.06.014.
  • J. Sarkar, S. Bhattacharyya, and A. Lal, “Performance comparison of natural refrigerants based cascade systems for ultra-low-temperature applications,” Int. J. Sustain. Energy, vol. 32, no. 5, pp. 406–420, 2013, doi: 10.1080/14786451.2013.765426.
  • G. Sachdeva, V. Jain, and S. S. Kachhwaha, “Performance Study of Cascade Refrigeration System Using Alternative Refrigerants,” Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng., vol. 8, no. 3, p. 7, 2014, [Online]. Available: http://waset.org/publications/9997619/performance-study-of-cascade-refrigeration-system-using-alternative-refrigerants.
  • Nasruddin, S. Sholahudin, N. Giannetti, and Arnas, “Optimization of a cascade refrigeration system using refrigerant C3H8 in high temperature circuits (HTC) and a mixture of C2H6/CO2 in low temperature circuits (LTC),” Appl. Therm. Eng., vol. 104, pp. 96–103, 2016, doi: 10.1016/j.applthermaleng.2016.05.059.
  • A. Kilicarslan and M. Hosoz, “Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples,” Energy Convers. Manag., vol. 51, no. 12, pp. 2947–2954, 2010, doi: 10.1016/j.enconman.2010.06.037.
  • R. Roy and B. K. Mandal, “Thermo-economic analysis and multi-objective optimization of vapour cascade refrigeration system using different refrigerant combinations: A comparative study,” J. Therm. Anal. Calorim., vol. 139, no. 5, pp. 3247–3261, 2020, doi: 10.1007/s10973-019-08710-x.
  • M. Deymi-Dashtebayaz, A. Sulin, T. Ryabova, I. Sankina, M. Farahnak, and R. Nazeri, “Energy, exergoeconomic and environmental optimization of a cascade refrigeration system using different low GWP refrigerants,” J. Environ. Chem. Eng., vol. 9, no. 6, p. 106473, 2021, doi: 10.1016/j.jece.2021.106473.
  • M. Gong, Z. Sun, J. Wu, Y. Zhang, C. Meng, and Y. Zhou, “Performance of R170 mixtures as refrigerants for refrigeration at -80 °C temperature range,” Int. J. Refrig., vol. 32, no. 5, pp. 892–900, 2009, doi: 10.1016/j.ijrefrig.2008.11.007.
  • S. Bhattacharyya, A. Garai, and J. Sarkar, “Thermodynamic analysis and optimization of a novel N2O-CO2 cascade system for refrigeration and heating,” Int. J. Refrig., vol. 32, no. 5, pp. 1077–1084, 2009, doi: 10.1016/j.ijrefrig.2008.09.008.
  • HAN XINGWANG, “Super low temperature transcritical cascade refrigeration system and refrigeration method,” CN110887266A, 2020.
  • G. Chen, V. Ierin, O. Volovyk, and K. Shestopalov, “An improved cascade mechanical compression–ejector cooling cycle,” Energy, vol. 170, pp. 459–470, Mar. 2019, doi: 10.1016/J.ENERGY.2018.12.107.
  • R. Ben Mansour, M. Ouzzane, and Z. Aidoun, “Numerical evaluation of ejector-assisted mechanical compression systems for refrigeration applications,” Int. J. Refrig., vol. 43, pp. 36–49, Jul. 2014, doi: 10.1016/J.IJREFRIG.2014.04.010.
  • T. K. Nguyen and C. H. Le, “Thermodynamic analysis of an ejector–vapour compressor cascade refrigeration system,” J. Therm. Anal. Calorim., vol. 141, no. 6, pp. 2189–2200, 2020, doi: 10.1007/s10973-020-09635-6.
  • X. She, Y. Yin, M. Xu, and X. Zhang, “A novel low-grade heat-driven absorption refrigeration system with LiCl-H2O and LiBr-H2O working pairs,” Int. J. Refrig., vol. 58, pp. 219–234, 2015, doi: 10.1016/j.ijrefrig.2015.06.016.
  • A. K. Songara, M. Fatouh, and S. Srinivasa Murthy, “Thermodynamic studies on HFC134a-DMA double effect and cascaded absorption refrigeration systems,” Int. J. Energy Res., vol. 22, no. 7, pp. 603–614, 1998, doi: 10.1002/(SICI)1099-114X(19980610)22:7<603::AID-ER379>3.0.CO;2-9.
  • P. Cui, M. Yu, Z. Liu, Z. Zhu, and S. Yang, “Energy, exergy, and economic (3E) analyses and multi-objective optimization of a cascade absorption refrigeration system for low-grade waste heat recovery,” Energy Convers. Manag., vol. 184, no. January, pp. 249–261, 2019, doi: 10.1016/j.enconman.2019.01.047.
  • V. Jain, S. S. Kachhwaha, and G. Sachdeva, “Thermodynamic performance analysis of a vapor compression-absorption cascaded refrigeration system,” Energy Convers. Manag., vol. 75, pp. 685–700, 2013, doi: 10.1016/j.enconman.2013.08.024.
  • Y. Xu, F. S. Chen, Q. Wang, X. Han, D. Li, and G. Chen, “A novel low-temperature absorption-compression cascade refrigeration system,” Appl. Therm. Eng., vol. 75, pp. 504–512, 2015, doi: 10.1016/j.applthermaleng.2014.10.043.
  • H. He, L. Wang, J. Yuan, Z. Wang, W. Fu, and K. Liang, “Performance evaluation of solar absorption-compression cascade refrigeration system with an integrated air-cooled compression cycle,” Energy Convers. Manag., vol. 201, no. September, p. 112153, 2019, doi: 10.1016/j.enconman.2019.112153.
  • Z. Sun, C. Wang, Y. Liang, H. Sun, S. Liu, and B. Dai, “Theoretical study on a novel CO2 Two-stage compression refrigeration system with parallel compression and solar absorption partial cascade refrigeration system,” Energy Convers. Manag., vol. 204, no. August 2019, p. 112278, 2020, doi: 10.1016/j.enconman.2019.112278.
  • J. Fernández-Seara, J. Sieres, and M. Vázquez, “Compression-absorption cascade refrigeration system,” Appl. Therm. Eng., vol. 26, no. 5–6, pp. 502–512, 2006, doi: 10.1016/j.applthermaleng.2005.07.015.
  • Y. Xu, G. Chen, Q. Wang, X. Han, N. Jiang, and S. Deng, “Performance study on a low-temperature absorption-compression cascade refrigeration system driven by low-grade heat,” Energy Convers. Manag., vol. 119, pp. 379–388, 2016, doi: 10.1016/j.enconman.2016.04.061.
  • J. Liu, Y. Liu, J. Yu, and G. Yan, “Thermodynamic analysis of a novel ejector-enhanced auto-cascade refrigeration cycle,” Appl. Therm. Eng., vol. 200, no. October 2021, p. 117636, 2022, doi: 10.1016/j.applthermaleng.2021.117636.
  • T. Bai, G. Yan, and J. Yu, “Experimental investigation on the concentration distribution behaviors of mixture in an ejector enhanced auto-cascade refrigeration system,” Int. J. Refrig., vol. 99, pp. 145–152, Mar. 2019, doi: 10.1016/J.IJREFRIG.2018.11.024.
  • G. Yan, C. He, and J. Yu, “Theoretical investigation on the performance of a modified refrigeration cycle using binary zeotropic hydrocarbon mixture R170/R290,” Int. J. Refrig., vol. 94, pp. 111–117, 2018, doi: 10.1016/j.ijrefrig.2018.07.023.
  • T. Bai, G. Yan, and J. Yu, “Experimental investigation of an ejector-enhanced auto-cascade refrigeration system,” Appl. Therm. Eng., vol. 129, pp. 792–801, Jan. 2018, doi: 10.1016/J.APPLTHERMALENG.2017.10.053.
  • X. Hao, L. Wang, Z. Wang, Y. Tan, and X. Yan, “Hybrid auto-cascade refrigeration system coupled with a heat-driven ejector cooling cycle,” Energy, vol. 161, pp. 988–998, Oct. 2018, doi: 10.1016/J.ENERGY.2018.07.201.
  • Y. Tan, L. Wang, and K. Liang, “Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa,” Appl. Therm. Eng., vol. 84, pp. 268–275, Jun. 2015, doi: 10.1016/J.APPLTHERMALENG.2015.03.047.
  • K. Du, S. Zhang, W. Xu, and X. Niu, “A study on the cycle characteristics of an auto-cascade refrigeration system,” Exp. Therm. Fluid Sci., vol. 33, no. 2, pp. 240–245, 2009, doi: 10.1016/j.expthermflusci.2008.08.006.
  • S. G. Kim and M. S. Kim, “Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant,” Int. J. Refrig., vol. 25, no. 8, pp. 1093–1101, 2002, doi: 10.1016/S0140-7007(01)00110-4.
  • J. S. Oh, M. Binns, S. Park, and J. K. Kim, “Improving the energy efficiency of industrial refrigeration systems,” Energy, vol. 112, pp. 826–835, 2016, doi: 10.1016/j.energy.2016.06.119.
  • S. A. Klein, “Engineering Equaiton Solver(EES).” F-Chart Software, p. 9.0, 2012.
  • Q. Jiang et al., “Experimental study on the thermal hydraulic performance of plate-fin heat exchangers for cryogenic applications,” Cryogenics (Guildf)., vol. 91, pp. 58–67, Apr. 2018, doi: 10.1016/J.CRYOGENICS.2018.02.006.
  • V. Jain, A. Singhal, G. Sachdeva, and S. S. Kachhwaha, “Advanced exergy analysis and risk estimation of novel NH3-H2O and H2O-LiBr integrated vapor absorption refrigeration system,” Energy Convers. Manag., vol. 224, no. June, p. 113348, 2020, doi: 10.1016/j.enconman.2020.113348.
  • V. Jain, G. Sachdeva, and S. S. Kachhwaha, “Comparative performance study and advanced exergy analysis of novel vapor compression-absorption integrated refrigeration system,” Energy Convers. Manag., vol. 172, no. June, pp. 81–97, 2018, doi: 10.1016/j.enconman.2018.06.116.
  • E. Mancuhan, “Comparative evaluation of a two-stage refrigeration system with flash intercooling using different refrigerants,” Therm. Sci., vol. 24, no. 2, pp. 815–830, 2020, doi: 10.2298/TSCI180921011M.
  • T. A. Moreira, F. J. do Nascimento, and G. Ribatski, “An investigation of the effect of nanoparticle composition and dimension on the heat transfer coefficient during flow boiling of aqueous nanofluids in small diameter channels (1.1 mm),” Exp. Therm. Fluid Sci., vol. 89, pp. 72–89, Dec. 2017, doi: 10.1016/J.EXPTHERMFLUSCI.2017.07.020.

Novel Design and Thermodynamic Analyses of Cascade Refrigeration System at Ultra-Low Temperature

Year 2022, , 142 - 150, 01.03.2022
https://doi.org/10.5541/ijot.1017282

Abstract

In this study, a cascade refrigeration system comprising gas and vapor compression cycles operating at ultra-low temperature was designed. In the thermodynamic analyses, R744, R404A, and R410A refrigerants in the high temperature cycle (HTC), and R1150, R170, and R23 in the low temperature cycle (LTC) were used. Thermodynamic analyses were carried out using the Engineering Equation Solver package program. Outputs considered were: system performance(COP), compression ratio, mass flow ratio and HTC cascade outlet temperature. Results show that, at different LTC condenser temperature values, R404A/R23 has the highest COP value, in the LTC, R23 has the highest compression ratio, while R1150 has the lowest one, in the HTC, R404A has the highest compression ratio, while R744 has the lowest one, the performance of the system increased with the decrease of the mass flow ratio.

References

  • IIR, “The Role of Refrigeration in the Global Economy,” 2015. Online].Available:https://www.scribd.com/document/452307076/NoteTech-29-EN-2-pdf.
  • European Commission, “Regulation (EU) No 517/2014 of The European Parliament and of the council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006,” 2014.
  • A.Mota-Babiloni et al., “Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact,”Int.J.Refrig., vol.111,pp.147–158,Mar.2020,doi: 10.1016/J.IJREFRIG.2019.11.016.
  • H. Yamaguchi, X.-D. Niu, K. Sekimoto, and P. Nekså, “Investigation of dry ice blockage in an ultra-low temperature cascade refrigeration system using CO2 as a working fluid,” Int. J. Refrig., vol. 34, no. 2, pp. 466–475, Mar. 2011, doi: 10.1016/J.IJREFRIG.2010.11.001.
  • K. Megdouli, B. M. Tashtoush, E. Nahdi, M. Elakhdar, L. Kairouani, and A. Mhimid, “Thermodynamic analysis of a novel ejector-cascade refrigeration cycles for freezing process applications and air-conditioning,” Int. J. Refrig., vol. 70, pp. 108–118, Oct. 2016, doi: 10.1016/J.IJREFRIG.2016.06.029.
  • J. Lee, C. Lee, S. Baek, and S. Jeong, “Investigation of ejector-equipped Joule–Thomson refrigerator operating below 77 K,” Int. J. Refrig., vol. 78, pp. 93–107, Jun. 2017, doi: 10.1016/J.IJREFRIG.2017.03.016.
  • H. C. Wang, G. F. Chen, X. Q. Dong, Y. X. Zhao, H. Guo, and M. Q. Gong, “Performance comparison of single-stage mixed-refrigerant Joule–Thomson cycle and pure-gas reverse Brayton cycle at fixed-temperatures from 80 to 180 K,” Int. J. Refrig., vol. 80, pp. 77–91, Aug. 2017, doi: 10.1016/J.IJREFRIG.2017.05.011.
  • A. Biglia et al., “Reversed Brayton cycle for food freezing at very low temperatures: Energy performance and optimisation,” Int. J. Refrig., vol. 81, pp. 82–95, Sep. 2017, doi: 10.1016/J.IJREFRIG.2017.05.022.
  • Z. Hongli, H. Yu, and C. Liang, “Experimental study on a small Brayton air refrigerator under −120 °C,” Appl. Therm. Eng., vol. 29, no. 8–9, pp. 1702–1706, Jun. 2009, doi: 10.1016/J.APPLTHERMALENG.2008.07.028.
  • L. H. P. Massuchetto, R. B. C. do Nascimento, S. M. R. de Carvalho, H. V. de Araújo, and J. V. H. d’Angelo, “Thermodynamic performance evaluation of a cascade refrigeration system with mixed refrigerants: R744/R1270, R744/R717 and R744/RE170,” Int. J. Refrig., vol. 106, pp. 201–212, Oct. 2019, doi: 10.1016/J.IJREFRIG.2019.07.005.
  • D. Yılmaz, Ü. Sınar, A. Özyurt, B. Yılmaz, and E. Mancuhan, “Numerical Investigation of Performance Effects of Excessive Cooling and Heating in a Two-Stage Cooling System Operating at Ultra Low Temperatures,” Afyon Kocatepe Univ. J. Sci. Eng., vol. 17, pp. 1172–1180, 2017, doi: 10.5578/fmbd.66304.
  • A. M. Dubey, S. Kumar, and G. Das Agrawal, “Thermodynamic analysis of a transcritical CO2/propylene (R744-R1270) cascade system for cooling and heating applications,” Energy Convers. Manag., vol. 86, pp. 774–783, 2014, doi: 10.1016/j.enconman.2014.05.105.
  • P. Bansal, “A review - Status of CO 2 as a low temperature refrigerant: Fundamentals and R&D opportunities,” Appl. Therm. Eng., vol. 41, pp. 18–29, 2012, doi: 10.1016/j.applthermaleng.2011.12.006.
  • B. Niu and Y. Zhang, “Experimental study of the refrigeration cycle performance for the R744/R290 mixtures,” Int. J. Refrig., vol. 30, no. 1, pp. 37–42, Jan. 2007, doi: 10.1016/J.IJREFRIG.2006.06.002.
  • K. K. Singh, R. Kumar, and A. Gupta, “Multi-objective Optimization of Thermodynamic and Economic Performances of Natural Refrigerants for Cascade Refrigeration,” Arab. J. Sci. Eng., vol. 46, no. 12, pp. 12235–12252, 2021, doi: 10.1007/s13369-021-05924-w.
  • Y. D. Zhu, Z. R. Peng, G. B. Wang, and X. R. Zhang, “Thermodynamic analysis of a novel multi-target-temperature cascade cycle for refrigeration,” Energy Convers. Manag., vol. 243, no. March, p. 114380, 2021, doi: 10.1016/j.enconman.2021.114380.
  • V. Adebayo, M. Abid, M. Adedeji, M. Dagbasi, and O. Bamisile, “Comparative thermodynamic performance analysis of a cascade refrigeration system with new refrigerants paired with CO2,” Appl. Therm. Eng., vol. 184, p. 116286, 2021, doi: 10.1016/j.applthermaleng.2020.116286.
  • K. Golbaten Mofrad, S. Zandi, G. Salehi, and M. H. Khoshgoftar Manesh, “4E analyses and multi-objective optimization of cascade refrigeration cycles with heat recovery system,” Therm. Sci. Eng. Prog., vol. 19, p. 100613, 2020, doi: 10.1016/j.tsep.2020.100613.
  • M. Pan, H. Zhao, D. Liang, Y. Zhu, Y. Liang, and G. Bao, “A review of the cascade refrigeration system,” Energies, vol. 13, no. 9, 2020, doi: 10.3390/en13092254.
  • E. Gholamian, P. Hanafizadeh, and P. Ahmadi, “Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system,” Appl. Therm. Eng., vol. 137, no. October 2017, pp. 689–699, 2018, doi: 10.1016/j.applthermaleng.2018.03.055.
  • A. H. Mosaffa, L. G. Farshi, C. A. Infante Ferreira, and M. A. Rosen, “Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers,” Energy Convers. Manag., vol. 117, pp. 442–453, 2016, doi: 10.1016/j.enconman.2016.03.053.
  • M. Aminyavari, B. Najafi, A. Shirazi, and F. Rinaldi, “Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system,” Appl. Therm. Eng., vol. 65, no. 1–2, pp. 42–50, 2014, doi: 10.1016/j.applthermaleng.2013.12.075.
  • J. Alberto Dopazo, J. Fernández-Seara, J. Sieres, and F. J. Uhía, “Theoretical analysis of a CO2-NH3 cascade refrigeration system for cooling applications at low temperatures,” Appl. Therm. Eng., vol. 29, no. 8–9, pp. 1577–1583, 2009, doi: 10.1016/j.applthermaleng.2008.07.006.
  • W. Bingming, W. Huagen, L. Jianfeng, and X. Ziwen, “Experimental investigation on the performance of NH3/CO2 cascade refrigeration system with twin-screw compressor,” Int. J. Refrig., vol. 32, no. 6, pp. 1358–1365, 2009, doi: 10.1016/j.ijrefrig.2009.03.008.
  • H. M. Getu and P. K. Bansal, “Thermodynamic analysis of an R744-R717 cascade refrigeration system,” Int. J. Refrig., vol. 31, no. 1, pp. 45–54, 2008, doi: 10.1016/j.ijrefrig.2007.06.014.
  • T. S. Lee, C. H. Liu, and T. W. Chen, “Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems,” Int. J. Refrig., vol. 29, no. 7, pp. 1100–1108, 2006, doi: 10.1016/j.ijrefrig.2006.03.003.
  • G. Di Nicola, G. Giuliani, F. Polonara, and R. Stryjek, “Blends of carbon dioxide and HFCs as working fluids for the low-temperature circuit in cascade refrigerating systems,” Int. J. Refrig., vol. 28, no. 2, pp. 130–140, 2005, doi: 10.1016/j.ijrefrig.2004.06.014.
  • J. Sarkar, S. Bhattacharyya, and A. Lal, “Performance comparison of natural refrigerants based cascade systems for ultra-low-temperature applications,” Int. J. Sustain. Energy, vol. 32, no. 5, pp. 406–420, 2013, doi: 10.1080/14786451.2013.765426.
  • G. Sachdeva, V. Jain, and S. S. Kachhwaha, “Performance Study of Cascade Refrigeration System Using Alternative Refrigerants,” Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng., vol. 8, no. 3, p. 7, 2014, [Online]. Available: http://waset.org/publications/9997619/performance-study-of-cascade-refrigeration-system-using-alternative-refrigerants.
  • Nasruddin, S. Sholahudin, N. Giannetti, and Arnas, “Optimization of a cascade refrigeration system using refrigerant C3H8 in high temperature circuits (HTC) and a mixture of C2H6/CO2 in low temperature circuits (LTC),” Appl. Therm. Eng., vol. 104, pp. 96–103, 2016, doi: 10.1016/j.applthermaleng.2016.05.059.
  • A. Kilicarslan and M. Hosoz, “Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples,” Energy Convers. Manag., vol. 51, no. 12, pp. 2947–2954, 2010, doi: 10.1016/j.enconman.2010.06.037.
  • R. Roy and B. K. Mandal, “Thermo-economic analysis and multi-objective optimization of vapour cascade refrigeration system using different refrigerant combinations: A comparative study,” J. Therm. Anal. Calorim., vol. 139, no. 5, pp. 3247–3261, 2020, doi: 10.1007/s10973-019-08710-x.
  • M. Deymi-Dashtebayaz, A. Sulin, T. Ryabova, I. Sankina, M. Farahnak, and R. Nazeri, “Energy, exergoeconomic and environmental optimization of a cascade refrigeration system using different low GWP refrigerants,” J. Environ. Chem. Eng., vol. 9, no. 6, p. 106473, 2021, doi: 10.1016/j.jece.2021.106473.
  • M. Gong, Z. Sun, J. Wu, Y. Zhang, C. Meng, and Y. Zhou, “Performance of R170 mixtures as refrigerants for refrigeration at -80 °C temperature range,” Int. J. Refrig., vol. 32, no. 5, pp. 892–900, 2009, doi: 10.1016/j.ijrefrig.2008.11.007.
  • S. Bhattacharyya, A. Garai, and J. Sarkar, “Thermodynamic analysis and optimization of a novel N2O-CO2 cascade system for refrigeration and heating,” Int. J. Refrig., vol. 32, no. 5, pp. 1077–1084, 2009, doi: 10.1016/j.ijrefrig.2008.09.008.
  • HAN XINGWANG, “Super low temperature transcritical cascade refrigeration system and refrigeration method,” CN110887266A, 2020.
  • G. Chen, V. Ierin, O. Volovyk, and K. Shestopalov, “An improved cascade mechanical compression–ejector cooling cycle,” Energy, vol. 170, pp. 459–470, Mar. 2019, doi: 10.1016/J.ENERGY.2018.12.107.
  • R. Ben Mansour, M. Ouzzane, and Z. Aidoun, “Numerical evaluation of ejector-assisted mechanical compression systems for refrigeration applications,” Int. J. Refrig., vol. 43, pp. 36–49, Jul. 2014, doi: 10.1016/J.IJREFRIG.2014.04.010.
  • T. K. Nguyen and C. H. Le, “Thermodynamic analysis of an ejector–vapour compressor cascade refrigeration system,” J. Therm. Anal. Calorim., vol. 141, no. 6, pp. 2189–2200, 2020, doi: 10.1007/s10973-020-09635-6.
  • X. She, Y. Yin, M. Xu, and X. Zhang, “A novel low-grade heat-driven absorption refrigeration system with LiCl-H2O and LiBr-H2O working pairs,” Int. J. Refrig., vol. 58, pp. 219–234, 2015, doi: 10.1016/j.ijrefrig.2015.06.016.
  • A. K. Songara, M. Fatouh, and S. Srinivasa Murthy, “Thermodynamic studies on HFC134a-DMA double effect and cascaded absorption refrigeration systems,” Int. J. Energy Res., vol. 22, no. 7, pp. 603–614, 1998, doi: 10.1002/(SICI)1099-114X(19980610)22:7<603::AID-ER379>3.0.CO;2-9.
  • P. Cui, M. Yu, Z. Liu, Z. Zhu, and S. Yang, “Energy, exergy, and economic (3E) analyses and multi-objective optimization of a cascade absorption refrigeration system for low-grade waste heat recovery,” Energy Convers. Manag., vol. 184, no. January, pp. 249–261, 2019, doi: 10.1016/j.enconman.2019.01.047.
  • V. Jain, S. S. Kachhwaha, and G. Sachdeva, “Thermodynamic performance analysis of a vapor compression-absorption cascaded refrigeration system,” Energy Convers. Manag., vol. 75, pp. 685–700, 2013, doi: 10.1016/j.enconman.2013.08.024.
  • Y. Xu, F. S. Chen, Q. Wang, X. Han, D. Li, and G. Chen, “A novel low-temperature absorption-compression cascade refrigeration system,” Appl. Therm. Eng., vol. 75, pp. 504–512, 2015, doi: 10.1016/j.applthermaleng.2014.10.043.
  • H. He, L. Wang, J. Yuan, Z. Wang, W. Fu, and K. Liang, “Performance evaluation of solar absorption-compression cascade refrigeration system with an integrated air-cooled compression cycle,” Energy Convers. Manag., vol. 201, no. September, p. 112153, 2019, doi: 10.1016/j.enconman.2019.112153.
  • Z. Sun, C. Wang, Y. Liang, H. Sun, S. Liu, and B. Dai, “Theoretical study on a novel CO2 Two-stage compression refrigeration system with parallel compression and solar absorption partial cascade refrigeration system,” Energy Convers. Manag., vol. 204, no. August 2019, p. 112278, 2020, doi: 10.1016/j.enconman.2019.112278.
  • J. Fernández-Seara, J. Sieres, and M. Vázquez, “Compression-absorption cascade refrigeration system,” Appl. Therm. Eng., vol. 26, no. 5–6, pp. 502–512, 2006, doi: 10.1016/j.applthermaleng.2005.07.015.
  • Y. Xu, G. Chen, Q. Wang, X. Han, N. Jiang, and S. Deng, “Performance study on a low-temperature absorption-compression cascade refrigeration system driven by low-grade heat,” Energy Convers. Manag., vol. 119, pp. 379–388, 2016, doi: 10.1016/j.enconman.2016.04.061.
  • J. Liu, Y. Liu, J. Yu, and G. Yan, “Thermodynamic analysis of a novel ejector-enhanced auto-cascade refrigeration cycle,” Appl. Therm. Eng., vol. 200, no. October 2021, p. 117636, 2022, doi: 10.1016/j.applthermaleng.2021.117636.
  • T. Bai, G. Yan, and J. Yu, “Experimental investigation on the concentration distribution behaviors of mixture in an ejector enhanced auto-cascade refrigeration system,” Int. J. Refrig., vol. 99, pp. 145–152, Mar. 2019, doi: 10.1016/J.IJREFRIG.2018.11.024.
  • G. Yan, C. He, and J. Yu, “Theoretical investigation on the performance of a modified refrigeration cycle using binary zeotropic hydrocarbon mixture R170/R290,” Int. J. Refrig., vol. 94, pp. 111–117, 2018, doi: 10.1016/j.ijrefrig.2018.07.023.
  • T. Bai, G. Yan, and J. Yu, “Experimental investigation of an ejector-enhanced auto-cascade refrigeration system,” Appl. Therm. Eng., vol. 129, pp. 792–801, Jan. 2018, doi: 10.1016/J.APPLTHERMALENG.2017.10.053.
  • X. Hao, L. Wang, Z. Wang, Y. Tan, and X. Yan, “Hybrid auto-cascade refrigeration system coupled with a heat-driven ejector cooling cycle,” Energy, vol. 161, pp. 988–998, Oct. 2018, doi: 10.1016/J.ENERGY.2018.07.201.
  • Y. Tan, L. Wang, and K. Liang, “Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa,” Appl. Therm. Eng., vol. 84, pp. 268–275, Jun. 2015, doi: 10.1016/J.APPLTHERMALENG.2015.03.047.
  • K. Du, S. Zhang, W. Xu, and X. Niu, “A study on the cycle characteristics of an auto-cascade refrigeration system,” Exp. Therm. Fluid Sci., vol. 33, no. 2, pp. 240–245, 2009, doi: 10.1016/j.expthermflusci.2008.08.006.
  • S. G. Kim and M. S. Kim, “Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant,” Int. J. Refrig., vol. 25, no. 8, pp. 1093–1101, 2002, doi: 10.1016/S0140-7007(01)00110-4.
  • J. S. Oh, M. Binns, S. Park, and J. K. Kim, “Improving the energy efficiency of industrial refrigeration systems,” Energy, vol. 112, pp. 826–835, 2016, doi: 10.1016/j.energy.2016.06.119.
  • S. A. Klein, “Engineering Equaiton Solver(EES).” F-Chart Software, p. 9.0, 2012.
  • Q. Jiang et al., “Experimental study on the thermal hydraulic performance of plate-fin heat exchangers for cryogenic applications,” Cryogenics (Guildf)., vol. 91, pp. 58–67, Apr. 2018, doi: 10.1016/J.CRYOGENICS.2018.02.006.
  • V. Jain, A. Singhal, G. Sachdeva, and S. S. Kachhwaha, “Advanced exergy analysis and risk estimation of novel NH3-H2O and H2O-LiBr integrated vapor absorption refrigeration system,” Energy Convers. Manag., vol. 224, no. June, p. 113348, 2020, doi: 10.1016/j.enconman.2020.113348.
  • V. Jain, G. Sachdeva, and S. S. Kachhwaha, “Comparative performance study and advanced exergy analysis of novel vapor compression-absorption integrated refrigeration system,” Energy Convers. Manag., vol. 172, no. June, pp. 81–97, 2018, doi: 10.1016/j.enconman.2018.06.116.
  • E. Mancuhan, “Comparative evaluation of a two-stage refrigeration system with flash intercooling using different refrigerants,” Therm. Sci., vol. 24, no. 2, pp. 815–830, 2020, doi: 10.2298/TSCI180921011M.
  • T. A. Moreira, F. J. do Nascimento, and G. Ribatski, “An investigation of the effect of nanoparticle composition and dimension on the heat transfer coefficient during flow boiling of aqueous nanofluids in small diameter channels (1.1 mm),” Exp. Therm. Fluid Sci., vol. 89, pp. 72–89, Dec. 2017, doi: 10.1016/J.EXPTHERMFLUSCI.2017.07.020.
There are 63 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics, Mechanical Engineering
Journal Section Research Articles
Authors

Hüsamettin Tan

Ali Erişen

Publication Date March 1, 2022
Published in Issue Year 2022

Cite

APA Tan, H., & Erişen, A. (2022). Novel Design and Thermodynamic Analyses of Cascade Refrigeration System at Ultra-Low Temperature. International Journal of Thermodynamics, 25(1), 142-150. https://doi.org/10.5541/ijot.1017282
AMA Tan H, Erişen A. Novel Design and Thermodynamic Analyses of Cascade Refrigeration System at Ultra-Low Temperature. International Journal of Thermodynamics. March 2022;25(1):142-150. doi:10.5541/ijot.1017282
Chicago Tan, Hüsamettin, and Ali Erişen. “Novel Design and Thermodynamic Analyses of Cascade Refrigeration System at Ultra-Low Temperature”. International Journal of Thermodynamics 25, no. 1 (March 2022): 142-50. https://doi.org/10.5541/ijot.1017282.
EndNote Tan H, Erişen A (March 1, 2022) Novel Design and Thermodynamic Analyses of Cascade Refrigeration System at Ultra-Low Temperature. International Journal of Thermodynamics 25 1 142–150.
IEEE H. Tan and A. Erişen, “Novel Design and Thermodynamic Analyses of Cascade Refrigeration System at Ultra-Low Temperature”, International Journal of Thermodynamics, vol. 25, no. 1, pp. 142–150, 2022, doi: 10.5541/ijot.1017282.
ISNAD Tan, Hüsamettin - Erişen, Ali. “Novel Design and Thermodynamic Analyses of Cascade Refrigeration System at Ultra-Low Temperature”. International Journal of Thermodynamics 25/1 (March 2022), 142-150. https://doi.org/10.5541/ijot.1017282.
JAMA Tan H, Erişen A. Novel Design and Thermodynamic Analyses of Cascade Refrigeration System at Ultra-Low Temperature. International Journal of Thermodynamics. 2022;25:142–150.
MLA Tan, Hüsamettin and Ali Erişen. “Novel Design and Thermodynamic Analyses of Cascade Refrigeration System at Ultra-Low Temperature”. International Journal of Thermodynamics, vol. 25, no. 1, 2022, pp. 142-50, doi:10.5541/ijot.1017282.
Vancouver Tan H, Erişen A. Novel Design and Thermodynamic Analyses of Cascade Refrigeration System at Ultra-Low Temperature. International Journal of Thermodynamics. 2022;25(1):142-50.