Research Article
BibTex RIS Cite
Year 2022, , 12 - 20, 01.09.2022
https://doi.org/10.5541/ijot.1024316

Abstract

References

  • O. Aboelwafa, S. K. Fateen, A. Soliman, I. M. Ismail, “a review on solar Rankine cycles: Working fluids, applications, and cycle modifications” Renewable Sustainable Energy Rev., 82, 868–885, 2018.
  • J. Freeman, K. Hellgardt, C. N. Markides, “an assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications”, Appl. Energy, 138, 605–620, 2015.
  • J. H. Reif, W. Alhalabi, “Solar-thermal powered desalination: Its significant challenges and potential”, Renewable Sustainable Energy Rev., 48, 152–165, 2015.
  • B. Peñate, L.G. Rodríguez, “Seawater reverse osmosis desalination driven by a solar Organic Rankine Cycle: Design and technology assessment for medium capacity range”, Desalination, 284, 86–91, 2012.
  • G. Xia, Q. Sun, J. Wang, X. Cao, Y. Yu & L. Wang, “Theoretical analysis of a reverse osmosis desalination system driven by solar-powered organic Rankine cycle and wind energy”, Desalin. Water Treat., 53, 876–886, 2015.
  • A. M. D. Torres, L.G. Rodriguez, “Design recommendations for solar organic Rankine cycle (ORC)–powered reverse osmosis (RO) desalination”, Renewable Sustainable Energy Rev., 16, 44– 53, 2012.
  • S. Gorjian, B. Ghobadian, “Solar desalination: A sustainable solution to water crisis in Iran”, Renewable Sustainable Energy Rev., 48, 571–584, 2015.
  • R. Z. Mathkor, B. Agnew, M. A. Al-Weshahi and F. Latrsh, “Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle”, Energies, 8, 8835-8856, 2015.
  • A.S.Nafey , M.A.Sharaf, “Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations”, Renewable Energy, 35, 2571-2580, 2010.
  • D.W. Abueidda and M. Gadalla, “Thermodynamic Analysis of an Integrated Solar-Based Multi-Stage Flash Desalination System”, IMECE, USA, 2012.
  • M. A. S. Eldean, H.E. Fath,” Exergy and thermo-economic analysis of solar thermal cycles powered multi-stage flash desalination process”, Desalin. Water Treat., 51, 7361–7378, 2013.
  • A. Valero, L. Serra, J. Uche, “Fundamentals of Exergy Cost Accounting and Thermoeconomics”, Part I: Theory, J. Energy Resour. Technol., 128, 1-8, 2006.
  • A. Valero, L. Serra, J. Uche, “Fundamentals of Exergy Cost Accounting and Thermoeconomics”, Part II:Applications, J. Energy Resour. Technol., 128 , 9-15, 2006.
  • S. Keshavarzian, M. V. Rocco, “Emanuela Colombo, Thermoeconomic diagnosis and malfunction decomposition: Methodology improvement of the Thermoeconomic Input-Output Analysis (TIOA)”, Energy Convers. Manage., 157, 644-655, 2018.
  • A. Valero, A. Abadías, “Thermoeconomic analysis of a cement production plant”, 29th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems, Slovenia, 2016.
  • J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes,John Wiley & Sons, Inc., 2006.
  • S. A. Kalogirou, Solar Energy Engineering Processes and Systems, Second edition, Elsevier Inc, ISBN–13: 978-0-12-397270-5, 2014.
  • S. Sadri, R. H. Khoshkhoo, M. Ameri, “Optimum exergoeconomic modeling of novel hybrid desalination system (MEDAD-RO)”, Energy, 149, 74-83, 2018.
  • A. Valero, S. Usón, C. Torres and W. Stanek, Theory of Exergy Cost and Thermo-Ecological Cost, chapter 7 of Thermodynamics for Sustainable Management of Natural Resources, Springer International Publishing, ISSN 1865-3529, 2017.
  • V.Verda, “Accuracy level in thermoeconomic diagnosis of energy systems”, Energy , 31:32 48–60, 2006.
  • S. Keshavarzian, M. V. Rocco, E. Colombo, “Thermoeconomic diagnosis and malfunction decomposition: Methodology improvement of the Thermoeconomic Input-Output Analysis (TIOA)”, Energy Convers. Manage., 157, 644-655, 2018.

Exergy Cost Accounting Analysis of New Hybrid Solar Organic Rankine Cycle-MSF Desalination System for Pasabandar Region in Gwadar Bay

Year 2022, , 12 - 20, 01.09.2022
https://doi.org/10.5541/ijot.1024316

Abstract

An energy system affordable plan selection using renewable energy is a significant problem for designing and manufacturing these systems. The fault detection and thermoeconomic diagnosis in the combined solar Rankine cycle and multi-stage flash (MSF) desalination system is analyzed. In the suggested energy system, the linear parabolic solar collector is utilized as a heat source for the organic Rankine cycle, the domestic hot water, and the multi-stage-flash desalination system. First, the energy balances and exergy analysis are implemented in the considered system, the energy value and exergy parameter are calculated. The exergy cost parameters are calculated for all parts and streams with the thermoeconomic and exergy cost accounting investigation. Finally, the thermoeconomic diagnosis is performed, and the malfunction of each component is evaluated, and the effect of each component's irreversibility on the other part is investigated. Results show that the linear parabolic solar collector has the maximum malfunction. Still, the condenser in the organic Rankine cycle is the most effective component on irreversibility increment among its counterparts..

References

  • O. Aboelwafa, S. K. Fateen, A. Soliman, I. M. Ismail, “a review on solar Rankine cycles: Working fluids, applications, and cycle modifications” Renewable Sustainable Energy Rev., 82, 868–885, 2018.
  • J. Freeman, K. Hellgardt, C. N. Markides, “an assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications”, Appl. Energy, 138, 605–620, 2015.
  • J. H. Reif, W. Alhalabi, “Solar-thermal powered desalination: Its significant challenges and potential”, Renewable Sustainable Energy Rev., 48, 152–165, 2015.
  • B. Peñate, L.G. Rodríguez, “Seawater reverse osmosis desalination driven by a solar Organic Rankine Cycle: Design and technology assessment for medium capacity range”, Desalination, 284, 86–91, 2012.
  • G. Xia, Q. Sun, J. Wang, X. Cao, Y. Yu & L. Wang, “Theoretical analysis of a reverse osmosis desalination system driven by solar-powered organic Rankine cycle and wind energy”, Desalin. Water Treat., 53, 876–886, 2015.
  • A. M. D. Torres, L.G. Rodriguez, “Design recommendations for solar organic Rankine cycle (ORC)–powered reverse osmosis (RO) desalination”, Renewable Sustainable Energy Rev., 16, 44– 53, 2012.
  • S. Gorjian, B. Ghobadian, “Solar desalination: A sustainable solution to water crisis in Iran”, Renewable Sustainable Energy Rev., 48, 571–584, 2015.
  • R. Z. Mathkor, B. Agnew, M. A. Al-Weshahi and F. Latrsh, “Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle”, Energies, 8, 8835-8856, 2015.
  • A.S.Nafey , M.A.Sharaf, “Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations”, Renewable Energy, 35, 2571-2580, 2010.
  • D.W. Abueidda and M. Gadalla, “Thermodynamic Analysis of an Integrated Solar-Based Multi-Stage Flash Desalination System”, IMECE, USA, 2012.
  • M. A. S. Eldean, H.E. Fath,” Exergy and thermo-economic analysis of solar thermal cycles powered multi-stage flash desalination process”, Desalin. Water Treat., 51, 7361–7378, 2013.
  • A. Valero, L. Serra, J. Uche, “Fundamentals of Exergy Cost Accounting and Thermoeconomics”, Part I: Theory, J. Energy Resour. Technol., 128, 1-8, 2006.
  • A. Valero, L. Serra, J. Uche, “Fundamentals of Exergy Cost Accounting and Thermoeconomics”, Part II:Applications, J. Energy Resour. Technol., 128 , 9-15, 2006.
  • S. Keshavarzian, M. V. Rocco, “Emanuela Colombo, Thermoeconomic diagnosis and malfunction decomposition: Methodology improvement of the Thermoeconomic Input-Output Analysis (TIOA)”, Energy Convers. Manage., 157, 644-655, 2018.
  • A. Valero, A. Abadías, “Thermoeconomic analysis of a cement production plant”, 29th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems, Slovenia, 2016.
  • J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes,John Wiley & Sons, Inc., 2006.
  • S. A. Kalogirou, Solar Energy Engineering Processes and Systems, Second edition, Elsevier Inc, ISBN–13: 978-0-12-397270-5, 2014.
  • S. Sadri, R. H. Khoshkhoo, M. Ameri, “Optimum exergoeconomic modeling of novel hybrid desalination system (MEDAD-RO)”, Energy, 149, 74-83, 2018.
  • A. Valero, S. Usón, C. Torres and W. Stanek, Theory of Exergy Cost and Thermo-Ecological Cost, chapter 7 of Thermodynamics for Sustainable Management of Natural Resources, Springer International Publishing, ISSN 1865-3529, 2017.
  • V.Verda, “Accuracy level in thermoeconomic diagnosis of energy systems”, Energy , 31:32 48–60, 2006.
  • S. Keshavarzian, M. V. Rocco, E. Colombo, “Thermoeconomic diagnosis and malfunction decomposition: Methodology improvement of the Thermoeconomic Input-Output Analysis (TIOA)”, Energy Convers. Manage., 157, 644-655, 2018.
There are 21 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Research Articles
Authors

Mojtaba Babaelahi 0000-0001-5829-6228

Somayyeh Sadrı

Publication Date September 1, 2022
Published in Issue Year 2022

Cite

APA Babaelahi, M., & Sadrı, S. (2022). Exergy Cost Accounting Analysis of New Hybrid Solar Organic Rankine Cycle-MSF Desalination System for Pasabandar Region in Gwadar Bay. International Journal of Thermodynamics, 25(3), 12-20. https://doi.org/10.5541/ijot.1024316
AMA Babaelahi M, Sadrı S. Exergy Cost Accounting Analysis of New Hybrid Solar Organic Rankine Cycle-MSF Desalination System for Pasabandar Region in Gwadar Bay. International Journal of Thermodynamics. September 2022;25(3):12-20. doi:10.5541/ijot.1024316
Chicago Babaelahi, Mojtaba, and Somayyeh Sadrı. “Exergy Cost Accounting Analysis of New Hybrid Solar Organic Rankine Cycle-MSF Desalination System for Pasabandar Region in Gwadar Bay”. International Journal of Thermodynamics 25, no. 3 (September 2022): 12-20. https://doi.org/10.5541/ijot.1024316.
EndNote Babaelahi M, Sadrı S (September 1, 2022) Exergy Cost Accounting Analysis of New Hybrid Solar Organic Rankine Cycle-MSF Desalination System for Pasabandar Region in Gwadar Bay. International Journal of Thermodynamics 25 3 12–20.
IEEE M. Babaelahi and S. Sadrı, “Exergy Cost Accounting Analysis of New Hybrid Solar Organic Rankine Cycle-MSF Desalination System for Pasabandar Region in Gwadar Bay”, International Journal of Thermodynamics, vol. 25, no. 3, pp. 12–20, 2022, doi: 10.5541/ijot.1024316.
ISNAD Babaelahi, Mojtaba - Sadrı, Somayyeh. “Exergy Cost Accounting Analysis of New Hybrid Solar Organic Rankine Cycle-MSF Desalination System for Pasabandar Region in Gwadar Bay”. International Journal of Thermodynamics 25/3 (September 2022), 12-20. https://doi.org/10.5541/ijot.1024316.
JAMA Babaelahi M, Sadrı S. Exergy Cost Accounting Analysis of New Hybrid Solar Organic Rankine Cycle-MSF Desalination System for Pasabandar Region in Gwadar Bay. International Journal of Thermodynamics. 2022;25:12–20.
MLA Babaelahi, Mojtaba and Somayyeh Sadrı. “Exergy Cost Accounting Analysis of New Hybrid Solar Organic Rankine Cycle-MSF Desalination System for Pasabandar Region in Gwadar Bay”. International Journal of Thermodynamics, vol. 25, no. 3, 2022, pp. 12-20, doi:10.5541/ijot.1024316.
Vancouver Babaelahi M, Sadrı S. Exergy Cost Accounting Analysis of New Hybrid Solar Organic Rankine Cycle-MSF Desalination System for Pasabandar Region in Gwadar Bay. International Journal of Thermodynamics. 2022;25(3):12-20.