Research Article
BibTex RIS Cite
Year 2022, , 41 - 45, 01.09.2022
https://doi.org/10.5541/ijot.1102511

Abstract

References

  • Y. Smirnov, A. Ivanova, and I. Kaplunov, “Dislocation formation and motion in germanium single crystals,” Crystallogr. Rep., 53(7), 1133–1136, 2008.
  • K. Gradwohl, M. Roder, A. Danilewsky, and R. Sumathi, “Investigation of the dislocation structure in Czochralski germanium crystals grown in [211] and [110] growth directions,” Cryst. Eng. Comm., 23(23), 4116-4124, 2021.
  • Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng. and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Scientific Rep., 6(1), 38386, 2016.
  • W. Dou, B. Alharthi, P. Grant, J. Grant, A. Mosleh, H. Tran, W. Du, M. Mortazavi, B. Li, H. Naseem, and S. Yu, “Crystalline GeSn growth by plasma enhanced chemical vapor deposition,” Opt. Mat. Exp., 8(10), 3220, 2018.
  • G. Zhu, T. Liu, Z. Zhong, X. Yang, L. Wang, and Z. Jiang, “Fabrication of High-Quality and Strain-Relaxed GeSn Microdisks by Integrating Selective Epitaxial Growth and Selective Wet Etching Methods,” Nanoscale Res. Lett., 15(1), 2020.
  • H. Li, J. Brouillet, A. Salas, X. Wang, and J. Liu, “Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics,” Opt. Mat. Exp., 3(9), 1385, 2013.
  • Y. Sadofiev, V. Martovitsky, M. Bazalevsky, A. Klekovkin, D. Averyanov, I. Vasilevsky, “Ge/GeSn heterostructures grown on Si(100) by molecular beam epitaxy,” Phy. Tech. of Semi., 1, 128-133, 2015.
  • C. Fang, Y. Liu, Q. Zhang, G. Han, X. Gao, Y. Shao, J. Zhang, and Y. Hao, “Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra,” Opt. Electr. Adv., 1(3), 18000401-18000410, 2018.
  • K. Gao, S. Prucnal, R. Huebner, W. Skorupa, M. Helm, S. Zhou, “Liquid phase epitaxy of Ge(1-x)Sn(x) alloy using ion-implantation and pulsed laser melting,” E-MRS 2014 Spring meeting, Lille, France, 2014.
  • H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge1−xSnx epilayers,” Scientific Rep., 7(1), 2017.
  • E. Azrak, W. Chen, S. Moldovan, Sh. Gao, S. Duguay, Ph. Pareige, and P. Cabarrocas, “Growth of In-Plane Ge1–xSnx Nanowires with 22 at. % Sn Using a Solid–Liquid–Solid Mechanism,” J. Phys. Chem. C, 122(45), 26236–26242, 2018.
  • A. Saidov, A. Razzakov, E. Koshchanov, “Liquid phase epitaxy of Ge1−xSnx semiconductor films,” Tech. Phys. Lett., 27(8), 698–700, 2001.
  • K. Matthew, S. Eduardo, “Beyond Clausius–Clapeyron: Determining the second derivative of a first-order phase transition line,” Am. J. Phys., 82(4), 301–305, 2014.
  • H. DeVoe, Thermodynamics and Chemistry - 2nd Ed. Maryland, 2019.
  • E. Shukin, A. Persov, E. Ameline, Colloidal chemistry, -M.: Higher. shk., 2004.

Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations

Year 2022, , 41 - 45, 01.09.2022
https://doi.org/10.5541/ijot.1102511

Abstract

Thermodynamic calculations were performed to determine the optimal conditions for the growth of germanium epitaxial layers from a Ge-Sn solution (system) to a germanium substrate. The determination of the optimal conditions was based on the change in the Gibbs energy values of the system during the crystallization process and the size of the crystal-forming nanoclusters. Based on the results obtained, we determined the optimal conditions for obtaining low-dislocation, crystalline perfect germanium epitaxial layers from a liquid tin solution, and recommended starting the crystallization process at 923 K and finishing at 800 K. When the temperature drops below 800 K, the formation of Ge1-xSnx epitaxial layers from the Ge-Sn solution was observed.

References

  • Y. Smirnov, A. Ivanova, and I. Kaplunov, “Dislocation formation and motion in germanium single crystals,” Crystallogr. Rep., 53(7), 1133–1136, 2008.
  • K. Gradwohl, M. Roder, A. Danilewsky, and R. Sumathi, “Investigation of the dislocation structure in Czochralski germanium crystals grown in [211] and [110] growth directions,” Cryst. Eng. Comm., 23(23), 4116-4124, 2021.
  • Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng. and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Scientific Rep., 6(1), 38386, 2016.
  • W. Dou, B. Alharthi, P. Grant, J. Grant, A. Mosleh, H. Tran, W. Du, M. Mortazavi, B. Li, H. Naseem, and S. Yu, “Crystalline GeSn growth by plasma enhanced chemical vapor deposition,” Opt. Mat. Exp., 8(10), 3220, 2018.
  • G. Zhu, T. Liu, Z. Zhong, X. Yang, L. Wang, and Z. Jiang, “Fabrication of High-Quality and Strain-Relaxed GeSn Microdisks by Integrating Selective Epitaxial Growth and Selective Wet Etching Methods,” Nanoscale Res. Lett., 15(1), 2020.
  • H. Li, J. Brouillet, A. Salas, X. Wang, and J. Liu, “Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics,” Opt. Mat. Exp., 3(9), 1385, 2013.
  • Y. Sadofiev, V. Martovitsky, M. Bazalevsky, A. Klekovkin, D. Averyanov, I. Vasilevsky, “Ge/GeSn heterostructures grown on Si(100) by molecular beam epitaxy,” Phy. Tech. of Semi., 1, 128-133, 2015.
  • C. Fang, Y. Liu, Q. Zhang, G. Han, X. Gao, Y. Shao, J. Zhang, and Y. Hao, “Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra,” Opt. Electr. Adv., 1(3), 18000401-18000410, 2018.
  • K. Gao, S. Prucnal, R. Huebner, W. Skorupa, M. Helm, S. Zhou, “Liquid phase epitaxy of Ge(1-x)Sn(x) alloy using ion-implantation and pulsed laser melting,” E-MRS 2014 Spring meeting, Lille, France, 2014.
  • H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge1−xSnx epilayers,” Scientific Rep., 7(1), 2017.
  • E. Azrak, W. Chen, S. Moldovan, Sh. Gao, S. Duguay, Ph. Pareige, and P. Cabarrocas, “Growth of In-Plane Ge1–xSnx Nanowires with 22 at. % Sn Using a Solid–Liquid–Solid Mechanism,” J. Phys. Chem. C, 122(45), 26236–26242, 2018.
  • A. Saidov, A. Razzakov, E. Koshchanov, “Liquid phase epitaxy of Ge1−xSnx semiconductor films,” Tech. Phys. Lett., 27(8), 698–700, 2001.
  • K. Matthew, S. Eduardo, “Beyond Clausius–Clapeyron: Determining the second derivative of a first-order phase transition line,” Am. J. Phys., 82(4), 301–305, 2014.
  • H. DeVoe, Thermodynamics and Chemistry - 2nd Ed. Maryland, 2019.
  • E. Shukin, A. Persov, E. Ameline, Colloidal chemistry, -M.: Higher. shk., 2004.
There are 15 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics, Thermodynamics and Statistical Physics, Physical Chemistry
Journal Section Research Articles
Authors

Alijon Razzokov

Khushnudbek Eshchanov 0000-0003-2853-4488

Publication Date September 1, 2022
Published in Issue Year 2022

Cite

APA Razzokov, A., & Eshchanov, K. (2022). Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations. International Journal of Thermodynamics, 25(3), 41-45. https://doi.org/10.5541/ijot.1102511
AMA Razzokov A, Eshchanov K. Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations. International Journal of Thermodynamics. September 2022;25(3):41-45. doi:10.5541/ijot.1102511
Chicago Razzokov, Alijon, and Khushnudbek Eshchanov. “Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations”. International Journal of Thermodynamics 25, no. 3 (September 2022): 41-45. https://doi.org/10.5541/ijot.1102511.
EndNote Razzokov A, Eshchanov K (September 1, 2022) Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations. International Journal of Thermodynamics 25 3 41–45.
IEEE A. Razzokov and K. Eshchanov, “Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations”, International Journal of Thermodynamics, vol. 25, no. 3, pp. 41–45, 2022, doi: 10.5541/ijot.1102511.
ISNAD Razzokov, Alijon - Eshchanov, Khushnudbek. “Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations”. International Journal of Thermodynamics 25/3 (September 2022), 41-45. https://doi.org/10.5541/ijot.1102511.
JAMA Razzokov A, Eshchanov K. Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations. International Journal of Thermodynamics. 2022;25:41–45.
MLA Razzokov, Alijon and Khushnudbek Eshchanov. “Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations”. International Journal of Thermodynamics, vol. 25, no. 3, 2022, pp. 41-45, doi:10.5541/ijot.1102511.
Vancouver Razzokov A, Eshchanov K. Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations. International Journal of Thermodynamics. 2022;25(3):41-5.