Year 2022,
, 41 - 45, 01.09.2022
Alijon Razzokov
,
Khushnudbek Eshchanov
References
- Y. Smirnov, A. Ivanova, and I. Kaplunov, “Dislocation formation and motion in germanium single crystals,” Crystallogr. Rep., 53(7), 1133–1136, 2008.
- K. Gradwohl, M. Roder, A. Danilewsky, and R. Sumathi, “Investigation of the dislocation structure in Czochralski germanium crystals grown in [211] and [110] growth directions,” Cryst. Eng. Comm., 23(23), 4116-4124, 2021.
- Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng. and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Scientific Rep., 6(1), 38386, 2016.
- W. Dou, B. Alharthi, P. Grant, J. Grant, A. Mosleh, H. Tran, W. Du, M. Mortazavi, B. Li, H. Naseem, and S. Yu, “Crystalline GeSn growth by plasma enhanced chemical vapor deposition,” Opt. Mat. Exp., 8(10), 3220, 2018.
- G. Zhu, T. Liu, Z. Zhong, X. Yang, L. Wang, and Z. Jiang, “Fabrication of High-Quality and Strain-Relaxed GeSn Microdisks by Integrating Selective Epitaxial Growth and Selective Wet Etching Methods,” Nanoscale Res. Lett., 15(1), 2020.
- H. Li, J. Brouillet, A. Salas, X. Wang, and J. Liu, “Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics,” Opt. Mat. Exp., 3(9), 1385, 2013.
- Y. Sadofiev, V. Martovitsky, M. Bazalevsky, A. Klekovkin, D. Averyanov, I. Vasilevsky, “Ge/GeSn heterostructures grown on Si(100) by molecular beam epitaxy,” Phy. Tech. of Semi., 1, 128-133, 2015.
- C. Fang, Y. Liu, Q. Zhang, G. Han, X. Gao, Y. Shao, J. Zhang, and Y. Hao, “Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra,” Opt. Electr. Adv., 1(3), 18000401-18000410, 2018.
- K. Gao, S. Prucnal, R. Huebner, W. Skorupa, M. Helm, S. Zhou, “Liquid phase epitaxy of Ge(1-x)Sn(x) alloy using ion-implantation and pulsed laser melting,” E-MRS 2014 Spring meeting, Lille, France, 2014.
- H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge1−xSnx epilayers,” Scientific Rep., 7(1), 2017.
- E. Azrak, W. Chen, S. Moldovan, Sh. Gao, S. Duguay, Ph. Pareige, and P. Cabarrocas, “Growth of In-Plane Ge1–xSnx Nanowires with 22 at. % Sn Using a Solid–Liquid–Solid Mechanism,” J. Phys. Chem. C, 122(45), 26236–26242, 2018.
- A. Saidov, A. Razzakov, E. Koshchanov, “Liquid phase epitaxy of Ge1−xSnx semiconductor films,” Tech. Phys. Lett., 27(8), 698–700, 2001.
- K. Matthew, S. Eduardo, “Beyond Clausius–Clapeyron: Determining the second derivative of a first-order phase transition line,” Am. J. Phys., 82(4), 301–305, 2014.
- H. DeVoe, Thermodynamics and Chemistry - 2nd Ed. Maryland, 2019.
- E. Shukin, A. Persov, E. Ameline, Colloidal chemistry, -M.: Higher. shk., 2004.
Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations
Year 2022,
, 41 - 45, 01.09.2022
Alijon Razzokov
,
Khushnudbek Eshchanov
Abstract
Thermodynamic calculations were performed to determine the optimal conditions for the growth of germanium epitaxial layers from a Ge-Sn solution (system) to a germanium substrate. The determination of the optimal conditions was based on the change in the Gibbs energy values of the system during the crystallization process and the size of the crystal-forming nanoclusters. Based on the results obtained, we determined the optimal conditions for obtaining low-dislocation, crystalline perfect germanium epitaxial layers from a liquid tin solution, and recommended starting the crystallization process at 923 K and finishing at 800 K. When the temperature drops below 800 K, the formation of Ge1-xSnx epitaxial layers from the Ge-Sn solution was observed.
References
- Y. Smirnov, A. Ivanova, and I. Kaplunov, “Dislocation formation and motion in germanium single crystals,” Crystallogr. Rep., 53(7), 1133–1136, 2008.
- K. Gradwohl, M. Roder, A. Danilewsky, and R. Sumathi, “Investigation of the dislocation structure in Czochralski germanium crystals grown in [211] and [110] growth directions,” Cryst. Eng. Comm., 23(23), 4116-4124, 2021.
- Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng. and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Scientific Rep., 6(1), 38386, 2016.
- W. Dou, B. Alharthi, P. Grant, J. Grant, A. Mosleh, H. Tran, W. Du, M. Mortazavi, B. Li, H. Naseem, and S. Yu, “Crystalline GeSn growth by plasma enhanced chemical vapor deposition,” Opt. Mat. Exp., 8(10), 3220, 2018.
- G. Zhu, T. Liu, Z. Zhong, X. Yang, L. Wang, and Z. Jiang, “Fabrication of High-Quality and Strain-Relaxed GeSn Microdisks by Integrating Selective Epitaxial Growth and Selective Wet Etching Methods,” Nanoscale Res. Lett., 15(1), 2020.
- H. Li, J. Brouillet, A. Salas, X. Wang, and J. Liu, “Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics,” Opt. Mat. Exp., 3(9), 1385, 2013.
- Y. Sadofiev, V. Martovitsky, M. Bazalevsky, A. Klekovkin, D. Averyanov, I. Vasilevsky, “Ge/GeSn heterostructures grown on Si(100) by molecular beam epitaxy,” Phy. Tech. of Semi., 1, 128-133, 2015.
- C. Fang, Y. Liu, Q. Zhang, G. Han, X. Gao, Y. Shao, J. Zhang, and Y. Hao, “Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra,” Opt. Electr. Adv., 1(3), 18000401-18000410, 2018.
- K. Gao, S. Prucnal, R. Huebner, W. Skorupa, M. Helm, S. Zhou, “Liquid phase epitaxy of Ge(1-x)Sn(x) alloy using ion-implantation and pulsed laser melting,” E-MRS 2014 Spring meeting, Lille, France, 2014.
- H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge1−xSnx epilayers,” Scientific Rep., 7(1), 2017.
- E. Azrak, W. Chen, S. Moldovan, Sh. Gao, S. Duguay, Ph. Pareige, and P. Cabarrocas, “Growth of In-Plane Ge1–xSnx Nanowires with 22 at. % Sn Using a Solid–Liquid–Solid Mechanism,” J. Phys. Chem. C, 122(45), 26236–26242, 2018.
- A. Saidov, A. Razzakov, E. Koshchanov, “Liquid phase epitaxy of Ge1−xSnx semiconductor films,” Tech. Phys. Lett., 27(8), 698–700, 2001.
- K. Matthew, S. Eduardo, “Beyond Clausius–Clapeyron: Determining the second derivative of a first-order phase transition line,” Am. J. Phys., 82(4), 301–305, 2014.
- H. DeVoe, Thermodynamics and Chemistry - 2nd Ed. Maryland, 2019.
- E. Shukin, A. Persov, E. Ameline, Colloidal chemistry, -M.: Higher. shk., 2004.