Research Article
BibTex RIS Cite
Year 2024, , 35 - 42, 01.03.2024
https://doi.org/10.5541/ijot.1324341

Abstract

References

  • C. L. Hii, S. V. Jangam, S. P. Ong, A. S. Mujumdar, "Solar drying: Fundamentals, applications and innovations," TPR Group Publication, vol. 1, no. 1, Singapore, 2012.
  • V. I. Umogbai, H. A. Iorter, "Design, construction and performance evaluation of a passive solar dryer for maize cobs," Afr J Food Sci Technol, vol. 5, no. 2, pp. 110-115, 2013.
  • C. Mamulkar, V. Katekar, "Performance Evaluation of Double Flow Solar Air Heater," in Natl. Conf. Innov. Paradig. Eng. Technol., vol. 2, no. 3, pp. 5-6, 2012.
  • V. P. Katekar, M. Asif, S. S. Deshmukh, "Energy and Environmental Scenario of South Asia," in Energy Environ. Secur. Dev. Ctries., 1st ed., Springer Nature Switzerland: Springer Nature Switzerland, vol. 3, no. 4, pp. 75-103, 2009.
  • V. P. Katekar, S. S. Deshmukh, A. Vasan, "Energy, drinking water and health nexus in India and its effects on environment and economy," J. Water Clim Chang, vol. 10, no. 5, pp. 997-1022, 2021. doi: 10.2166/wcc.2020.340.
  • M. Durusoju, C. Goyal, I. Sheik, A. Dongre, L. Marbate, K. Rohit, et al., "Heat Transfer Enhancement Techniques for Solar Air Heater--A Review," Int J Res Appl Sci Eng Technol, vol. 4, no. 7, pp. 451-457, 2016.
  • V. P. Katekar, S. S. Deshmukh, "Energy-Drinking Water-Health Nexus in Developing Countries," in Energy Environ. Secur. Dev. Countries, Adv. Sci. Technol. Secur. Appl., Springer, Cham., vol. 5, no. 2, pp. 411-445, 2021. doi: https://doi.org/10.1007/978-3-030-63654-8_17.
  • K. J. Khatod, V. P. Katekar, S. S. Deshmukh, "An evaluation for the optimal sensible heat storage material for maximizing solar still productivity: A state-of-the-art review," J. Energy Storage, vol. 11, no. 5, pp. 104622, 2022. doi: 10.1016/j.est.2022.104622.
  • V. P. Katekar, S. S. Deshmukh, "A review of the use of phase change materials on performance of solar stills," J. Energy Storage, vol. 30, no. 8, pp. 101398, 2020. doi: 10.1016/j.est.2020.101398.
  • N. Rajeshwari, A. Ramalingam, "Low-cost material used to construct effective box type solar dryer," Arch Appl Sci Res, vol. 4, no. 3, pp. 1476-1482, 2012.
  • G. Tiwari, V. K. Katiyar, V. Dwivedi, A. K. Katiyar, C. K. Pandey, "A comparative study of commonly used solar dryers in India," Int J Current Eng Tech, vol. 3, no. 2, pp. 1-6, 2013.
  • A. Madhlopa, S. A. Jones, J. D. Kalenga Saka, "A solar air heater with composite absorber systems for food dehydration," J. Renewable Energy, vol. 27, no. 1, pp. 27-30, 2002.
  • A. Brett, D. R. Cox, R. Simmons, G. Anstee, "A solar tunnel dryer for natural convection drying vegetables and other commodities in Cameroon," J. Am. Med. Assoc., vol. 15, no. 4, pp. 31-35, 1996.
  • M. Isiaka, A. M. I. El-Okene, U. S. Muhammed, "Effect of selected factors on drying process of tomato in forced convection solar energy dryer," Res. J. Appl. Sci. Eng. Technol., vol. 4, no. 7, pp. 1-4, 2012.
  • E. A. Arinze, S. Sokhansanj, G. J. Schoenau, F. G. Trauttmansdorff, "Experimental evaluation, simulation and optimization of a commercial heated-air batch hay drier," J. Agric. Eng. Res., vol. 65, no. 3, pp. 301-314, 1996.
  • J. K. Afriyie, H. Rajakaruna, M. A. A. Nazha, F. K. Forson, "Simulation and optimization of the ventilation in a chimney-dependent solar crop dryer," Sol. Energy., vol. 85, no. 7, pp. 1560-1573, 2011.
  • K. UmeshToshniwal, "A review paper on solar dryer," Int. J. Eng. Res. Appl., vol. 3, no. 5, pp. 896-902, 2013.
  • B. M. A. Amer, M. A. Hossain, K. Gottschalk, "Design and performance evaluation of a new hybrid solar dryer for banana," Energy Convers Manag, vol. 51, no. 4, pp. 813-820, 2010.
  • Megha S. Sontakke, Prof. Sanjay P. Salve, "Solar drying technology: A review," International Refereed Journal of Engineering and Science (IRJES), vol. 4, no. 8, pp. 29-35, 2015.
  • Umesh Toshniwal, S.R Karale, "A review paper on Solar dryer," Int. J. Eng. Res. Appl., vol. 3, no. 5, pp. 896-902, 2013.

Computational Fluid Dynamic Analysis of Solar Dryer Equipped with Different Phase Change Materials

Year 2024, , 35 - 42, 01.03.2024
https://doi.org/10.5541/ijot.1324341

Abstract

A phase change material (PCM) is an organic (or inorganic) chemical that may store and release thermal energy in latent form as it changes physical states. This investigation aims to see how phase transition materials influence the thermal efficiency of the solar dryer. For the performance analysis, three PCMs were used: paraffin wax, lauric acid, and palmitic acid. As drying material, 5 mm thick potato slices were employed. According to the computational results, the total input thermal energy for the dryer for paraffin wax, lauric acid, and palmitic acid was about 17.36 MJ, 18.46 MJ, and 17.76 MJ, respectively, for 2 kg drying mass. When paraffin wax, lauric acid, and palmitic acid were utilized, the overall efficiency of the dryer increased by about 87%, 40.2%, and 12.4%, respectively, compared to the conventional dryer. By comparing the results of simulations and predictions, it is concluded that paraffin wax is the best-performing PCM for solar dryers as the energy storage material.

References

  • C. L. Hii, S. V. Jangam, S. P. Ong, A. S. Mujumdar, "Solar drying: Fundamentals, applications and innovations," TPR Group Publication, vol. 1, no. 1, Singapore, 2012.
  • V. I. Umogbai, H. A. Iorter, "Design, construction and performance evaluation of a passive solar dryer for maize cobs," Afr J Food Sci Technol, vol. 5, no. 2, pp. 110-115, 2013.
  • C. Mamulkar, V. Katekar, "Performance Evaluation of Double Flow Solar Air Heater," in Natl. Conf. Innov. Paradig. Eng. Technol., vol. 2, no. 3, pp. 5-6, 2012.
  • V. P. Katekar, M. Asif, S. S. Deshmukh, "Energy and Environmental Scenario of South Asia," in Energy Environ. Secur. Dev. Ctries., 1st ed., Springer Nature Switzerland: Springer Nature Switzerland, vol. 3, no. 4, pp. 75-103, 2009.
  • V. P. Katekar, S. S. Deshmukh, A. Vasan, "Energy, drinking water and health nexus in India and its effects on environment and economy," J. Water Clim Chang, vol. 10, no. 5, pp. 997-1022, 2021. doi: 10.2166/wcc.2020.340.
  • M. Durusoju, C. Goyal, I. Sheik, A. Dongre, L. Marbate, K. Rohit, et al., "Heat Transfer Enhancement Techniques for Solar Air Heater--A Review," Int J Res Appl Sci Eng Technol, vol. 4, no. 7, pp. 451-457, 2016.
  • V. P. Katekar, S. S. Deshmukh, "Energy-Drinking Water-Health Nexus in Developing Countries," in Energy Environ. Secur. Dev. Countries, Adv. Sci. Technol. Secur. Appl., Springer, Cham., vol. 5, no. 2, pp. 411-445, 2021. doi: https://doi.org/10.1007/978-3-030-63654-8_17.
  • K. J. Khatod, V. P. Katekar, S. S. Deshmukh, "An evaluation for the optimal sensible heat storage material for maximizing solar still productivity: A state-of-the-art review," J. Energy Storage, vol. 11, no. 5, pp. 104622, 2022. doi: 10.1016/j.est.2022.104622.
  • V. P. Katekar, S. S. Deshmukh, "A review of the use of phase change materials on performance of solar stills," J. Energy Storage, vol. 30, no. 8, pp. 101398, 2020. doi: 10.1016/j.est.2020.101398.
  • N. Rajeshwari, A. Ramalingam, "Low-cost material used to construct effective box type solar dryer," Arch Appl Sci Res, vol. 4, no. 3, pp. 1476-1482, 2012.
  • G. Tiwari, V. K. Katiyar, V. Dwivedi, A. K. Katiyar, C. K. Pandey, "A comparative study of commonly used solar dryers in India," Int J Current Eng Tech, vol. 3, no. 2, pp. 1-6, 2013.
  • A. Madhlopa, S. A. Jones, J. D. Kalenga Saka, "A solar air heater with composite absorber systems for food dehydration," J. Renewable Energy, vol. 27, no. 1, pp. 27-30, 2002.
  • A. Brett, D. R. Cox, R. Simmons, G. Anstee, "A solar tunnel dryer for natural convection drying vegetables and other commodities in Cameroon," J. Am. Med. Assoc., vol. 15, no. 4, pp. 31-35, 1996.
  • M. Isiaka, A. M. I. El-Okene, U. S. Muhammed, "Effect of selected factors on drying process of tomato in forced convection solar energy dryer," Res. J. Appl. Sci. Eng. Technol., vol. 4, no. 7, pp. 1-4, 2012.
  • E. A. Arinze, S. Sokhansanj, G. J. Schoenau, F. G. Trauttmansdorff, "Experimental evaluation, simulation and optimization of a commercial heated-air batch hay drier," J. Agric. Eng. Res., vol. 65, no. 3, pp. 301-314, 1996.
  • J. K. Afriyie, H. Rajakaruna, M. A. A. Nazha, F. K. Forson, "Simulation and optimization of the ventilation in a chimney-dependent solar crop dryer," Sol. Energy., vol. 85, no. 7, pp. 1560-1573, 2011.
  • K. UmeshToshniwal, "A review paper on solar dryer," Int. J. Eng. Res. Appl., vol. 3, no. 5, pp. 896-902, 2013.
  • B. M. A. Amer, M. A. Hossain, K. Gottschalk, "Design and performance evaluation of a new hybrid solar dryer for banana," Energy Convers Manag, vol. 51, no. 4, pp. 813-820, 2010.
  • Megha S. Sontakke, Prof. Sanjay P. Salve, "Solar drying technology: A review," International Refereed Journal of Engineering and Science (IRJES), vol. 4, no. 8, pp. 29-35, 2015.
  • Umesh Toshniwal, S.R Karale, "A review paper on Solar dryer," Int. J. Eng. Res. Appl., vol. 3, no. 5, pp. 896-902, 2013.
There are 20 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Chetan Mamulkar 0000-0003-0912-3747

Sanjay Ikhar 0000-0002-0660-7693

V. Katekar

Early Pub Date November 20, 2023
Publication Date March 1, 2024
Published in Issue Year 2024

Cite

APA Mamulkar, C., Ikhar, S., & Katekar, V. (2024). Computational Fluid Dynamic Analysis of Solar Dryer Equipped with Different Phase Change Materials. International Journal of Thermodynamics, 27(1), 35-42. https://doi.org/10.5541/ijot.1324341
AMA Mamulkar C, Ikhar S, Katekar V. Computational Fluid Dynamic Analysis of Solar Dryer Equipped with Different Phase Change Materials. International Journal of Thermodynamics. March 2024;27(1):35-42. doi:10.5541/ijot.1324341
Chicago Mamulkar, Chetan, Sanjay Ikhar, and V. Katekar. “Computational Fluid Dynamic Analysis of Solar Dryer Equipped With Different Phase Change Materials”. International Journal of Thermodynamics 27, no. 1 (March 2024): 35-42. https://doi.org/10.5541/ijot.1324341.
EndNote Mamulkar C, Ikhar S, Katekar V (March 1, 2024) Computational Fluid Dynamic Analysis of Solar Dryer Equipped with Different Phase Change Materials. International Journal of Thermodynamics 27 1 35–42.
IEEE C. Mamulkar, S. Ikhar, and V. Katekar, “Computational Fluid Dynamic Analysis of Solar Dryer Equipped with Different Phase Change Materials”, International Journal of Thermodynamics, vol. 27, no. 1, pp. 35–42, 2024, doi: 10.5541/ijot.1324341.
ISNAD Mamulkar, Chetan et al. “Computational Fluid Dynamic Analysis of Solar Dryer Equipped With Different Phase Change Materials”. International Journal of Thermodynamics 27/1 (March 2024), 35-42. https://doi.org/10.5541/ijot.1324341.
JAMA Mamulkar C, Ikhar S, Katekar V. Computational Fluid Dynamic Analysis of Solar Dryer Equipped with Different Phase Change Materials. International Journal of Thermodynamics. 2024;27:35–42.
MLA Mamulkar, Chetan et al. “Computational Fluid Dynamic Analysis of Solar Dryer Equipped With Different Phase Change Materials”. International Journal of Thermodynamics, vol. 27, no. 1, 2024, pp. 35-42, doi:10.5541/ijot.1324341.
Vancouver Mamulkar C, Ikhar S, Katekar V. Computational Fluid Dynamic Analysis of Solar Dryer Equipped with Different Phase Change Materials. International Journal of Thermodynamics. 2024;27(1):35-42.