Research Article
BibTex RIS Cite

Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach

Year 2024, , 64 - 71, 01.03.2024
https://doi.org/10.5541/ijot.1338341

Abstract

Antibiotics are playing crucial role in the treatment of humans since the last few centuries. Their usage has several benefits along with side effects. The efficacy of antibiotics for the treatment of ailments may be retained by controlling the drug dosage. This may be achieved with supercritical fluid technology (SFT). The antibiotic drug solubility in supercritical carbon dioxide (scCO2) is available only at specific temperature and pressure conditions, for effective utilization of SFT, solubility at various conditions are required. Equation of state (EoS) method is used for solubility data modeling and it requires critical properties of the solute, molar volume of the solute and sublimation pressure of the solute along with fugacity coefficient, pressure and temperature. These properties are estimated using group contribution methods. For antibiotics solute critical properties, molar volume and sublimation pressure are unavailable and existing group contribution methods are also not applicable due to the lack of functional group contributions in their techniques. Thus, there is a need to address EoS methodology without using solute properties. Hence, a new EoS methodology for solubility modeling is, proposed without using critical properties of the solute, molar volume of the solute and vapour pressure of the solute. Thus, this study focuses on the development of new solubility model that correlates antibiotics using equation of state (EoS). Importantly, the proposed solubility model does not use the critical properties of the antibiotics. Correlating ability of the proposed model is indicated in terms of regression coefficient and arithmetic average relative deviation percentage (AARD %).

References

  • A. Tabernero, E. M. del Valle and M. A. Galán, “Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling,” Chem. Eng. Process, vol. 60, pp. 9-25, October 2012. doi:10.1016/j.cep.2012.06.004.
  • B. Subramaniam, R.A. Rajewski and K. Snavely, “Pharmaceutical processing with supercritical carbon dioxide,” J. Pharm.Sci. vol. 86, no. 8, pp. 885-890, August 1997. doi:10.1021/js9700661.
  • M. Mukhopadhyay, “Partial molar volume reduction of solvent for solute crystallization using carbon dioxide as antisolvent,” J Supercrit Fluids, vol. 25, no. 3, pp. 213-223, April 2003. doi:10.1016/S0896-8446(02)00147-X.
  • N. Elvassore, I. Kikic, “Pharmaceutical processing with supercritical fluids,” In High Pressure Process Technology: Fundamentals and Applications, A. Bertucci, A. Better (Ed.,) Elsevier Science, 2001, pp 612-625.
  • R. B. Gupta and P. Chattopadhyay, “Method of forming nanoparticles and microparticles of controllable size using supercritical fluids and ultrasound,” US pat., 20020000681, March 2002.
  • E. Reverchon, R. Adami, G. Caputo and I. de marco, “spherical microparticles production by supercritical antisolvent precipirarion:Interpretation of resuts,” J. Supercrit Fluids, vol. 47, no. 1, pp. 70-84, November 2008. doi:10.1016/j.supflu.2008.06.002.
  • G. Sodeifian, S. A. Sajadian, N. S. Ardestani and F.Razmimanesh, “Production of Loratadine Drug Nanoparticles Using Ultrasonic-Assisted Rapid Expansion of Supercritical Solution into Aqueous Solution (US-RESSAS),” J Supercrit Fluids, vol. 147, pp. 241-253, May 2019. doi:10.1016/j.supflu.2018.11.007.
  • J. F. Brennecke and C. A. Eckert, “Phase equilibria for supercritical fluid process design,” AIChE Journal, vol. 35, no. 9, pp. 1409-1427, September 1989. doi:10.1002 /aic.690350902.
  • G. Mahesh and C. Garlapati,“Modelling of solubility of some parabens in supercritical carbon dioxide and new correlations,”Arab. J. Sci. Eng., vol. 47, pp. 5533-5545, May 2022.doi:10.1007/s13369-021-05500-2.
  • T.A. Reddy and C. Garlapati, “Dimensionless Empirical Model to Correlate Pharmaceutical Compound Solubility in Supercritical Carbon Dioxide,” Chem. Eng. Technol. vol. 42, no. 12, pp. 2621–2630, December 2019. doi:10.1002/ceat.201900283.
  • P.Subra, S. Castellani, H. Ksibi and Y. Garrabos,” Contribution to the determination of the solubility of -carotene in supercritical carbon dioxide and nitrous oxide: experimental data and modeling,” Fluid Phase Equilib. vol. 131, no. 1-2, pp. 269-286, May 1997.
  • R. Hartono, G. A. Mansoori and A. Suwono, “Prediction of solubility of biomolecules in supercritical solvents” Chem. Eng. Sci. vol. 56, no. 24, pp. 6949-6958, December 2001, doi:10.1016/S0009-2509(01)00327-X.
  • A. Issaoui, A. B. Moussa and H. Ksibi, “Correlation of the binary interaction factor for polar solutes dissolved in supercritical carbon dioxide” In. J . of Thermodynamics, vol. 14, no. 1, pp. 37-42, March 2011, doi:10.5541/ijot.342.
  • R. S. Alwi and C. Garlapati, “New correlations for the solubility of anticancer drugs in supercritical carbon dioxide,” Chem.Pap. vol. 76, no. 3, pp. 1385–1399, March 2022. doi:10.1007/s11696-021-01943-x .
  • G. Sodeifian, C. Garlapati , F. Razmimanesh and H. Nateghi.“Experimental solubility and thermodynamic modelling of empagliflozin in Supercritical Carbon Dioxide,”Sci. Rep. vol. 12, no. 9008, May 2022. doi:10.1038/s41598-022-12769-2
  • G. Sodeifian ,C. Garlapati , S. M. Hazaveie and F Sodeifian,“Solubility of 2,4,7-Triamino-6-phenylpteridine (Triamterene, Diuretic Drug) in supercritical carbon dioxide: Experimental data and modeling,” J. Chem. Eng. Data vol. 65, no. 9, pp. 4406-4416, August 2020. doi:10.1021/acs.jced.0c00268
  • G. Sodeifian, C. Garlapati, F. Razmimanesh, H. Nateghi, “Solubility measurement and thermodynamic modelling of Pantoprazole sodium sesqihydrate in supercritical carbon dioxide,” Sci. Rep. vol. 12, no. 7758, May 2022. doi:10.1038/s4159-022-11887-1.
  • X. Bian, Z. Du, Y. Tang, “An improved density-based model for the solubility of some compounds in supercritical carbon dioxide,” Thermochimica Acta, vol. 519, no.1-2, pp. 16-21, May 2011. doi:10.1016/j.tca.2011.02.023.
  • C. Garlapati, G. Madras, “Solubilities of Some Chlorophenols in Supercritical CO2 in the Presence and Absence of Cosolvents,” J. Chem. Eng.Data. vol. 55, no.1, pp. 273-277, January 2010, doi:10.1021/je900328c.
  • C. Garlapati, G. Madras, “New empirical expressions to correlate solubilities of solids in supercritical carbon dioxide,” Thermochimica Acta, vol. 500, no.1-2, pp. 123-127, March 2010.doi:10.1016/j.tca.2009.12.004.
  • J. Chrastil, “Solubility of solids and liquids in supercritical gases, J.Phys.Chem,” vol. 86, no.15, pp. 3016-3021, July 1982. doi:10.1021/j100212a041.
  • K. D. Bartle, A. A. Clifford, S. A. Jafar and G. F. Shilstone, “Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide,” J. Phys. Chem. Ref. Data, vol. 20, no. 4, pp.713-756, July 1991. doi:10.1063/1.555893.
  • J. M. Prausnitz, R. N. Lichtenthaler and E. G. de Azevedo, Molecular thermodynamics of fluid-phase equilibria, 3nd Ed, New York:Pearson Education, 1998.
  • H. Orbey and S.I. Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and Their Mixing Rules, New York: Cambridge University Press, 1998.
  • W. J. Schmitt and R. C. Reid, “Solubility of monofunctional organic solids in chemically diverse supercritical fluids,” J. Chem. Eng. Data, vol. 31, no. 2, pp. 204-212, April 1986.doi:10.1021/je00044a021.
  • L. A. Estévez , F. J. Colpas and E. A. Müller. “A Simple Thermodynamic Model for the Solubility of Thermolabile Solids in Supercritical Fluids,” Chem. Eng. Sci. vol. 232, no.116268, March 2021. doi:10.1016/j.ces.2020.116268.
  • Y. Iwai, Y. Koga, T. Fukuda and Y. Arai, “Correlation of Solubilities of High-Boiling Components in supercritical carbon dioxide,” J. Chem. Eng. Jpn. vol. 25, no. 6 pp.757–760, April 1992. doi: 10.1252/jcej.25.757.
  • J. O. Valderrama and V. H. Alvarez. “Correct Way of Reporting Results when Modelling Supercritical Phase Equilibria using Equations of State,” Can. J. Chem. Eng. vol. 83, no. 3, pp. 578-581, May 2005. doi:10.1002/cjce.5450830323.
  • K. Ongkasin et al., “Solubility of cefuroxime axetil in supercritical CO2: Measurement and modelling,”J Supercrit Fluids, vol. 152, p.104498, October 2019. doi: 10.1016/j.supflu.2019.03.010.
  • M.D. Gordillo, M.A. Blanco, A. Molero and E. Martinez de la Ossa, “Solubility of the antibiotic Penicillin G in supercritical carbon dioxide,”J Supercrit Fluids vol.15, no.3, pp.183–190, July 1999. doi:10.1016/S0896-8446(99)00008-X.
  • M. Ko, V. Shah, P. R. Bienkowski and H. D. Cochran, “Solubility of the antibiotic penicillin V in supercritical CO2,” J Supercrit Fluids, vol. 4, no.1, pp. 32-39, March 1991.doi:10.1016/0896-8446 (91) 900 28-5.
  • M. A. Sabegh, H. Rajaei, A. Z. Hezave and F. Esmaeilzadeh, “Amoxicillin Solubility and Supercritical Carbon Dioxide,” J. Chem. Eng. Data, vol. 57, no. 10 ,pp. 2750–2755, September 2012. doi:10.1021/je3006826. H. Asiabi, Y. Yamini, F. Latifeh and A. Vatanara, “Solubilities of four macrolide antibiotics in supercritical carbon dioxide and their correlations using semi-empirical models,” J. Supercrit. fluids. vol.104, pp. 62-69, September 2015. doi:10.1016/j.supflu.2015.05.018.
  • C. Garlapati, G. Madras, “Temperature independent mixing rules to correlate the solubilities of antibiotics and anti-inflammatory drugs in SCCO2,”Thermochimica Acta vol. 496,no.1-2, pp. 54–58, December 2009. doi:10.1016/j.tca.2009 .06. 022.
  • A. Garmroodi, J. Hassan and Y. Yamini, “Solubilities of the Drugs Benzocaine, Metronidazole Benzoate, and Naproxen in Supercritical Carbon Dioxide,” J. Chem. Eng. Data vol. 49, no. 3, pp.709-712, April 2004.doi: 10.1021/je020218w.
  • G. Sodeifan, C. Garlapati, F. Razmimanesh , M. Ghanaat Ghamsari, “Measurement and modeling of clemastine fumarate(antihistamine drug) solubility in supercritical carbon dioxide,” Sci. Rep. vol.11, no. 24344, December 2021. doi:10.1038/s41598-021-03596-y.
  • K. Shi, L. Feng, L. He and H. Li, “Solubility determination and coreelation of Gatifloxacin,Enrofloxacin , and Ciprofloxacin in supercritical CO2, J. Chem. Eng. Data, vol. 62, no.12, pp.4235-4243, November 2017. doi:10.1021/acs.jced7b00601.
Year 2024, , 64 - 71, 01.03.2024
https://doi.org/10.5541/ijot.1338341

Abstract

References

  • A. Tabernero, E. M. del Valle and M. A. Galán, “Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling,” Chem. Eng. Process, vol. 60, pp. 9-25, October 2012. doi:10.1016/j.cep.2012.06.004.
  • B. Subramaniam, R.A. Rajewski and K. Snavely, “Pharmaceutical processing with supercritical carbon dioxide,” J. Pharm.Sci. vol. 86, no. 8, pp. 885-890, August 1997. doi:10.1021/js9700661.
  • M. Mukhopadhyay, “Partial molar volume reduction of solvent for solute crystallization using carbon dioxide as antisolvent,” J Supercrit Fluids, vol. 25, no. 3, pp. 213-223, April 2003. doi:10.1016/S0896-8446(02)00147-X.
  • N. Elvassore, I. Kikic, “Pharmaceutical processing with supercritical fluids,” In High Pressure Process Technology: Fundamentals and Applications, A. Bertucci, A. Better (Ed.,) Elsevier Science, 2001, pp 612-625.
  • R. B. Gupta and P. Chattopadhyay, “Method of forming nanoparticles and microparticles of controllable size using supercritical fluids and ultrasound,” US pat., 20020000681, March 2002.
  • E. Reverchon, R. Adami, G. Caputo and I. de marco, “spherical microparticles production by supercritical antisolvent precipirarion:Interpretation of resuts,” J. Supercrit Fluids, vol. 47, no. 1, pp. 70-84, November 2008. doi:10.1016/j.supflu.2008.06.002.
  • G. Sodeifian, S. A. Sajadian, N. S. Ardestani and F.Razmimanesh, “Production of Loratadine Drug Nanoparticles Using Ultrasonic-Assisted Rapid Expansion of Supercritical Solution into Aqueous Solution (US-RESSAS),” J Supercrit Fluids, vol. 147, pp. 241-253, May 2019. doi:10.1016/j.supflu.2018.11.007.
  • J. F. Brennecke and C. A. Eckert, “Phase equilibria for supercritical fluid process design,” AIChE Journal, vol. 35, no. 9, pp. 1409-1427, September 1989. doi:10.1002 /aic.690350902.
  • G. Mahesh and C. Garlapati,“Modelling of solubility of some parabens in supercritical carbon dioxide and new correlations,”Arab. J. Sci. Eng., vol. 47, pp. 5533-5545, May 2022.doi:10.1007/s13369-021-05500-2.
  • T.A. Reddy and C. Garlapati, “Dimensionless Empirical Model to Correlate Pharmaceutical Compound Solubility in Supercritical Carbon Dioxide,” Chem. Eng. Technol. vol. 42, no. 12, pp. 2621–2630, December 2019. doi:10.1002/ceat.201900283.
  • P.Subra, S. Castellani, H. Ksibi and Y. Garrabos,” Contribution to the determination of the solubility of -carotene in supercritical carbon dioxide and nitrous oxide: experimental data and modeling,” Fluid Phase Equilib. vol. 131, no. 1-2, pp. 269-286, May 1997.
  • R. Hartono, G. A. Mansoori and A. Suwono, “Prediction of solubility of biomolecules in supercritical solvents” Chem. Eng. Sci. vol. 56, no. 24, pp. 6949-6958, December 2001, doi:10.1016/S0009-2509(01)00327-X.
  • A. Issaoui, A. B. Moussa and H. Ksibi, “Correlation of the binary interaction factor for polar solutes dissolved in supercritical carbon dioxide” In. J . of Thermodynamics, vol. 14, no. 1, pp. 37-42, March 2011, doi:10.5541/ijot.342.
  • R. S. Alwi and C. Garlapati, “New correlations for the solubility of anticancer drugs in supercritical carbon dioxide,” Chem.Pap. vol. 76, no. 3, pp. 1385–1399, March 2022. doi:10.1007/s11696-021-01943-x .
  • G. Sodeifian, C. Garlapati , F. Razmimanesh and H. Nateghi.“Experimental solubility and thermodynamic modelling of empagliflozin in Supercritical Carbon Dioxide,”Sci. Rep. vol. 12, no. 9008, May 2022. doi:10.1038/s41598-022-12769-2
  • G. Sodeifian ,C. Garlapati , S. M. Hazaveie and F Sodeifian,“Solubility of 2,4,7-Triamino-6-phenylpteridine (Triamterene, Diuretic Drug) in supercritical carbon dioxide: Experimental data and modeling,” J. Chem. Eng. Data vol. 65, no. 9, pp. 4406-4416, August 2020. doi:10.1021/acs.jced.0c00268
  • G. Sodeifian, C. Garlapati, F. Razmimanesh, H. Nateghi, “Solubility measurement and thermodynamic modelling of Pantoprazole sodium sesqihydrate in supercritical carbon dioxide,” Sci. Rep. vol. 12, no. 7758, May 2022. doi:10.1038/s4159-022-11887-1.
  • X. Bian, Z. Du, Y. Tang, “An improved density-based model for the solubility of some compounds in supercritical carbon dioxide,” Thermochimica Acta, vol. 519, no.1-2, pp. 16-21, May 2011. doi:10.1016/j.tca.2011.02.023.
  • C. Garlapati, G. Madras, “Solubilities of Some Chlorophenols in Supercritical CO2 in the Presence and Absence of Cosolvents,” J. Chem. Eng.Data. vol. 55, no.1, pp. 273-277, January 2010, doi:10.1021/je900328c.
  • C. Garlapati, G. Madras, “New empirical expressions to correlate solubilities of solids in supercritical carbon dioxide,” Thermochimica Acta, vol. 500, no.1-2, pp. 123-127, March 2010.doi:10.1016/j.tca.2009.12.004.
  • J. Chrastil, “Solubility of solids and liquids in supercritical gases, J.Phys.Chem,” vol. 86, no.15, pp. 3016-3021, July 1982. doi:10.1021/j100212a041.
  • K. D. Bartle, A. A. Clifford, S. A. Jafar and G. F. Shilstone, “Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide,” J. Phys. Chem. Ref. Data, vol. 20, no. 4, pp.713-756, July 1991. doi:10.1063/1.555893.
  • J. M. Prausnitz, R. N. Lichtenthaler and E. G. de Azevedo, Molecular thermodynamics of fluid-phase equilibria, 3nd Ed, New York:Pearson Education, 1998.
  • H. Orbey and S.I. Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and Their Mixing Rules, New York: Cambridge University Press, 1998.
  • W. J. Schmitt and R. C. Reid, “Solubility of monofunctional organic solids in chemically diverse supercritical fluids,” J. Chem. Eng. Data, vol. 31, no. 2, pp. 204-212, April 1986.doi:10.1021/je00044a021.
  • L. A. Estévez , F. J. Colpas and E. A. Müller. “A Simple Thermodynamic Model for the Solubility of Thermolabile Solids in Supercritical Fluids,” Chem. Eng. Sci. vol. 232, no.116268, March 2021. doi:10.1016/j.ces.2020.116268.
  • Y. Iwai, Y. Koga, T. Fukuda and Y. Arai, “Correlation of Solubilities of High-Boiling Components in supercritical carbon dioxide,” J. Chem. Eng. Jpn. vol. 25, no. 6 pp.757–760, April 1992. doi: 10.1252/jcej.25.757.
  • J. O. Valderrama and V. H. Alvarez. “Correct Way of Reporting Results when Modelling Supercritical Phase Equilibria using Equations of State,” Can. J. Chem. Eng. vol. 83, no. 3, pp. 578-581, May 2005. doi:10.1002/cjce.5450830323.
  • K. Ongkasin et al., “Solubility of cefuroxime axetil in supercritical CO2: Measurement and modelling,”J Supercrit Fluids, vol. 152, p.104498, October 2019. doi: 10.1016/j.supflu.2019.03.010.
  • M.D. Gordillo, M.A. Blanco, A. Molero and E. Martinez de la Ossa, “Solubility of the antibiotic Penicillin G in supercritical carbon dioxide,”J Supercrit Fluids vol.15, no.3, pp.183–190, July 1999. doi:10.1016/S0896-8446(99)00008-X.
  • M. Ko, V. Shah, P. R. Bienkowski and H. D. Cochran, “Solubility of the antibiotic penicillin V in supercritical CO2,” J Supercrit Fluids, vol. 4, no.1, pp. 32-39, March 1991.doi:10.1016/0896-8446 (91) 900 28-5.
  • M. A. Sabegh, H. Rajaei, A. Z. Hezave and F. Esmaeilzadeh, “Amoxicillin Solubility and Supercritical Carbon Dioxide,” J. Chem. Eng. Data, vol. 57, no. 10 ,pp. 2750–2755, September 2012. doi:10.1021/je3006826. H. Asiabi, Y. Yamini, F. Latifeh and A. Vatanara, “Solubilities of four macrolide antibiotics in supercritical carbon dioxide and their correlations using semi-empirical models,” J. Supercrit. fluids. vol.104, pp. 62-69, September 2015. doi:10.1016/j.supflu.2015.05.018.
  • C. Garlapati, G. Madras, “Temperature independent mixing rules to correlate the solubilities of antibiotics and anti-inflammatory drugs in SCCO2,”Thermochimica Acta vol. 496,no.1-2, pp. 54–58, December 2009. doi:10.1016/j.tca.2009 .06. 022.
  • A. Garmroodi, J. Hassan and Y. Yamini, “Solubilities of the Drugs Benzocaine, Metronidazole Benzoate, and Naproxen in Supercritical Carbon Dioxide,” J. Chem. Eng. Data vol. 49, no. 3, pp.709-712, April 2004.doi: 10.1021/je020218w.
  • G. Sodeifan, C. Garlapati, F. Razmimanesh , M. Ghanaat Ghamsari, “Measurement and modeling of clemastine fumarate(antihistamine drug) solubility in supercritical carbon dioxide,” Sci. Rep. vol.11, no. 24344, December 2021. doi:10.1038/s41598-021-03596-y.
  • K. Shi, L. Feng, L. He and H. Li, “Solubility determination and coreelation of Gatifloxacin,Enrofloxacin , and Ciprofloxacin in supercritical CO2, J. Chem. Eng. Data, vol. 62, no.12, pp.4235-4243, November 2017. doi:10.1021/acs.jced7b00601.
There are 36 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Mahesh Garlapati 0000-0001-7595-6902

Chandrasekhar Garlapati 0000-0002-6259-476X

Early Pub Date January 23, 2024
Publication Date March 1, 2024
Published in Issue Year 2024

Cite

APA Garlapati, M., & Garlapati, C. (2024). Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach. International Journal of Thermodynamics, 27(1), 64-71. https://doi.org/10.5541/ijot.1338341
AMA Garlapati M, Garlapati C. Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach. International Journal of Thermodynamics. March 2024;27(1):64-71. doi:10.5541/ijot.1338341
Chicago Garlapati, Mahesh, and Chandrasekhar Garlapati. “Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach”. International Journal of Thermodynamics 27, no. 1 (March 2024): 64-71. https://doi.org/10.5541/ijot.1338341.
EndNote Garlapati M, Garlapati C (March 1, 2024) Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach. International Journal of Thermodynamics 27 1 64–71.
IEEE M. Garlapati and C. Garlapati, “Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach”, International Journal of Thermodynamics, vol. 27, no. 1, pp. 64–71, 2024, doi: 10.5541/ijot.1338341.
ISNAD Garlapati, Mahesh - Garlapati, Chandrasekhar. “Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach”. International Journal of Thermodynamics 27/1 (March 2024), 64-71. https://doi.org/10.5541/ijot.1338341.
JAMA Garlapati M, Garlapati C. Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach. International Journal of Thermodynamics. 2024;27:64–71.
MLA Garlapati, Mahesh and Chandrasekhar Garlapati. “Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach”. International Journal of Thermodynamics, vol. 27, no. 1, 2024, pp. 64-71, doi:10.5541/ijot.1338341.
Vancouver Garlapati M, Garlapati C. Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach. International Journal of Thermodynamics. 2024;27(1):64-71.