Research Article
BibTex RIS Cite

Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) as a Substitute for Conventional Hydrocarbons

Year 2024, , 30 - 42, 01.12.2024
https://doi.org/10.5541/ijot.1493436

Abstract

The present study investigation aims to contribute to the field of energy engineering by exploring the performances of cyclopentane gas as promising working fluid in combined power and cooling (ORC–VCRC) system. The present research emphasizes the comparative computation of various thermodynamic performance characteristics of (ORC–VCRC) system activated by low temperature heat sources using cyclopentane gas as a substitute to the conventional hydrocarbons (butane, isobutene, propane and propylene) widely used in (ORC–VCRC) system. A computer code was developed using MATLAB software for the numerical simulation. The performance characteristics computed are the performance indicators (overall coefficient of performance (COPoval) and working fluid mass flow rate of per kW cooling capacity (MkW), expansion ratio in expander (EPR) and compression ratio in compressor (CMR). Furthermore, the effects of different operating parameters (e.g., boiler, condenser, and evaporator temperatures, isentropic efficiency of expander (ηexp), and isentropic efficiency of compressor (ηcomp)) on performance indicators are also examined for each working fluid. Results showed that under the same operating parameters, the use of cyclopentane gas as a working fluid in (ORC–VCRC) system exhibited a higher COPoval and lower MkW compared with conventional hydrocarbons. When boiler temperature reaches 90 °C, the COPoval of cyclopentane increase by 14 %, 19.8 %, 43.8 % and 59 % compared to those of butane, isobutene, propane and propylene, respectively. However, the MkW of cyclopentane reduced by 19.1 %, 29.2 %, 44.3 % and 53.7 % compared to same fluids, respectively. On another hand, the study revealed that the COPoval rises as the temperature of the boiler, evaporator, exp and comp rises. Conversely, when the condenser temperature rises, the COPoval value falls for all fluids. Overall, the study confirms that cyclopentane gas could be a promising working fluid in terms of performance indicators for (ORC–VCRC) system.

References

  • P. Gang, L. Jing, J. Jie, “Design and analysis of a novel low-temperature solar thermal electric 465 system with two-stage collectors and heat storage units,” Renew. Energy., 36, 2324–2333, 2011, doi:10.1016/j.renene.2011.02.008.
  • M. Ciani Bassetti, D. Consoli, G. Manente, A. Lazzaretto, “Design and off-design models of a 468 hybrid geothermal-solar power plant enhanced by a thermal storage,” Renew. Energy., 128, 460–472, 2018, doi:10.1016/j.renene.2017.05.078.
  • H.Cho, A.D, Smith, P .Mago, “Combined cooling, heating and power: a review of performance improvement and optimization,” Applied Energy., 136, 168–185, 2014, doi:10.1016/j.apenergy.2014.08.107.
  • H. Chang, Z. Wan, Y. Zheng, X. Chen, S. Shu, Z. Tu, S.H. Chan, “Energy analysis of a hybrid PEMFC-solar energy residential micro CCHP system combined with an organic Rankine cycle and vapor compression cycle,” Energy Conversion and Management., 142, 374–384, 2017, doi:10.1016/j.enconman.2017.03.057.
  • C. Yue, F. You, Y. Huang, “Thermal and economic analysis of an energy system of an ORC coupled with vehicle air conditioning,” International Journal of Refrigeration., 64, 152–167, 2016, doi:10.1016/j.ijrefrig.2016.01.005.
  • J.M. Calm, “The next generation of refrigerants- historical review, considerations, and Outlook,” International Journal of Refrigeration., 31, 1123–1133, 2008, doi:10.1016/j.ijrefrig.2016.01.005.
  • N.Abas, A.R.Kalair, N.Khan, A.Haider, Z.Saleem, M.S.Saleem, “Natural and synthetic refrigerants, global warming: A review.,” Renew. Sustain. Energy Rev., 90, 557–569, 2018, doi:10.1016/j.rser.2018.03.099.
  • S.Wang, C. Liu, Q. Li, L. Liu, E. Huo, C. Zhang,“Selection principle of working fluid for organic Rankine cycle based on environmental benefits and economic performance,” Applied Thermal Engineering., 178,115598, 2020, doi:10.1016/j.applthermaleng.2020.115598.
  • J.Bao, L. Zhao, “A review of working fluid and expander selections for organic Rankine cycle,” Renew Sustain Energy Rev., 24, 325–42, 2013, doi:10.1016/j.rser.2013.03.040.
  • B. Saleh, “Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy,” Journal of Advanced Research., 7, 651–660, 2016, doi:10.1016/j.jare.2016.06.006.
  • S. Aphornratana, T. Sriveerakul,“Analysis of a combined Rankine-vapour compression refrigeration cycle,” Energy Conversion and Management., 51, 2557–2564, 2010, doi:10.1016/j.enconman.2010.04.016.
  • M. Asim, M.K.H. Leung, Z. Shan, Y. Li, D.Y.C. Leung, M. Ni, “Thermodynamic and thermo-economic analysis of integrated organic Rankine cycle for waste heat recovery from vapor compression refrigeration cycle,” Energy Procedia, 143, 192–198, 2017, doi:10.1016/j.egypro.2017.12.670.
  • F. Molés, J.Navarro-Esbri, B.Peris, A.Mota-Babiloni, K. Kontomaris, “Thermodynamic analysis of a combined organic Rankine cycle and vapor compression cycle system activated with low temperature heat sources using low GWP fluids,” Applied Thermal Engineering., 87, 444–453, 2015, doi:10.1016/j.applthermaleng.2015.04.083.
  • H. Li, X. Bu, L. Wang, Z. Long, Y. Lian, “Hydrocarbon working fluids for a Rankine cycle powered vapor compression refrigeration system using low-grade thermal energy,” Energy Build., 65, 167–172, 2013, doi:10.1016/j.enbuild.2013.06.012.
  • X.Bu, L.Wang, H.Li, “Performance analysis and working fluid selection for geothermal energy-powered organic Rankine-vapor compression air conditioning,” Geotherm Energy., 1,1–14, 2013, doi:10.1186/2195-9706-1-2.
  • H.Wang, R.Peterson, K.Harada, E.Miller, R.Ingram-Goble, L.Fisher, “Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling,” Energy., 36, 447–458, 2011, doi:10.1016/j.energy.2010.10.020.
  • M.O. Nazer, S.M. Zubair, “Analysis of Rankine cycle air-conditioning systems,” ASHRAE Journal., 88, 332–334, 1982.
  • A.N. Egrican, A. Karakas, “Second law analysis of a solar powered Rankine cycle/vapor compression cycle,” Journal of Heat Recovery Systems., 6, 135–141, 1986, doi:10.1016/0198-7593(86)90073-1.
  • K.H.Kim, H.Perez-Blanco, 2015, “Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration,” Applied Thermal Engineering., 91, 964–974, 2015, doi:10.1016/j.applthermaleng.2015.04.062.
  • J. Jeong, Y.T. Kang, “Analysis of a refrigeration cycle driven by refrigerant steam turbine,” International Journal of Refrigeration., 27, 33–41, 2004, doi:10.1016/S0140-7007(03)00101-4.
  • B. Hu, J.Guo, Y.Yang, Y.Shao, “Performance analysis and working fluid selection of organic Rankine steam compression air conditioning driven by ship waste heat,” Energy Reports., 8, 194–202, 2022, doi:10.1016/j.egyr.2022.01.094.
  • S. Khatoon, N.M.A. Almefreji, M.H.Kim, “Thermodynamic study of a combined power and refrigeration system for low-grade heat energy source,” Energies., 14, no. 2, 410, 2021, doi:10.3390/en14020410.
  • E. Cihan and B. Kavasogullari, “Energy and exergy analysis of a combined refrigeration and waste heat driven organic rankine cycle system,” Thermal science., 21, no. 6A, 2621–2631, 2017, doi: 10.2298/TSCI150324002C.
  • B. Kavasogullari, E. Cihan, H. Demir, “Energy and Exergy Analyses of a Refrigerant Pump Integrated Dual-Ejector Refrigeration (DER) System,” Arabian Journal for Science and Engineering., 46, 11633–11644, 2021, doi:10.1007/s13369-021-05541-7.
  • E.O.Küçük and M. Kılıç, “Exergoeconomic and Exergetic Sustainability Analysis of a Combined Dual-Pressure Organic Rankine Cycle and Vapor Compression Refrigeration Cycle,” Sustainability., 15, no. 8, 6987, 2023, doi: 10.3390/su15086987.
  • A.K.S. Al-Sayyab, A. Mota-Babiloni, J.Navarro-Esbrí, “Performance Evaluation of Modified Compound Organic Rankine-Vapour Compression Cycle with Two Cooling Levels, Heating, and Power Generation,” Appl Energy., 334, 120651, 2023, doi: 10.1016/j.apenergy.2023.120651.
  • R. Zhar, A.Allouhi, M.Ghodbane, A.Jamil, K.Lahrech, “Parametric analysis and multi-objective optimization of a combined Organic Rankine Cycle and Vapor Compression Cycle,” Sustainable Energy Technologies and Assessments., 47, 101401, 2021, doi:10.1016/j.seta.2021.101401.
  • Z.Wang, Y.Zhao, X.Xia, S.Zhang, Y.Xiao, X.Zhang, W.Chen, “Experimental study of the thermodynamic performance of the ORC-VCC system with a zeotropic mixture,” Applied Thermal Engineering., 250, 123534, 2024, doi: 10.1016/j.applthermaleng.2024.123534.
  • D.M. Ginosar, L.M. Petkovic, D.P.Guillen,“Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid,” Energy Fuels., 25, 9, 4138–4144, 2011, doi:10.1021/ef200639r.
  • Y.Maalem, Y.Tamene, H.Madani, “Behavior of the thermo-physical properties and performance evaluation of the refrigerants blends of (Fluorocarbon/Hydrocarbon) for cooling cycle,” Recueil de Mécanique., 6, 544-559, 2022, doi:10.5281/zenodo.5918533.
  • J.S. Lim, J.Y. Park, J.W. Kang, B.G. Lee, “Measurement of vapor–liquid equilibria for the binary systems of propane +1,1,1,2-tetrafluoroethane and 1,1,1-trifluoroethane+propane at various temperatures,” Fluid Phase Equilibria., 243, 57-63, 2006, doi:10.1016/j.fluid.2006.02.016. S.Bobbo, R.Stryjek, N.Elvassore, A.Bertucco, “A recirculation apparatus for vapor–liquid equilibrium measurements of refrigerants. Binary mixtures of R600a, R134a and R236fa,” Fluid Phase Equilibria., 150, 343-352, 1998, doi:10.1016/S0378-3812(98)00334-3.
  • Q.N. Ho, B.G. Lee, J.Y. Park, J.D. Kim, J. S. Lim,“Measurement of vapor–liquid equilibria for the binary mixture of propylene (R-1270)+1,1,1,2-tetrafluoroethane (HFC-134a),” Fluid Phase Equilibria., 225, 125-132, 2004, doi:10.1016/j.fluid.2004.08.028.
  • L. Fedele, S. Bobbo, R. Camporese, M. Scattolini, “Isothermal vapour+liquid equilibrium measurements and correlation for the pentafluoroethane+cyclopropane and the cyclopropane+1,1,1,2-tetrafluoroethane binary systems,” Fluid Phase Equilibria., 251, 41-46, 2007, doi:10.1016/j.fluid.2006.10.023.
  • N. Lim, G.Seong, H.Roh, “Vapor-Liquid Equilibria for the 1,1,1,2-Tetrafluoroethane (HFC-134a)+n-Butane (R-600) System,” J. Chem. Eng. Data., 52, 1313-1318, 2007, doi:10.1021/je700041v.
  • Y. Maalem, S. Fedali, H. Madani, Y. Tamene, “Performance analysis of ternary azeotropic mixtures in different vapor compression refrigeration cycles,” International Journal of Refrigeration., 119, 139–151, 2020, doi:10.1016/j.ijrefrig.2020.07.021.
Year 2024, , 30 - 42, 01.12.2024
https://doi.org/10.5541/ijot.1493436

Abstract

References

  • P. Gang, L. Jing, J. Jie, “Design and analysis of a novel low-temperature solar thermal electric 465 system with two-stage collectors and heat storage units,” Renew. Energy., 36, 2324–2333, 2011, doi:10.1016/j.renene.2011.02.008.
  • M. Ciani Bassetti, D. Consoli, G. Manente, A. Lazzaretto, “Design and off-design models of a 468 hybrid geothermal-solar power plant enhanced by a thermal storage,” Renew. Energy., 128, 460–472, 2018, doi:10.1016/j.renene.2017.05.078.
  • H.Cho, A.D, Smith, P .Mago, “Combined cooling, heating and power: a review of performance improvement and optimization,” Applied Energy., 136, 168–185, 2014, doi:10.1016/j.apenergy.2014.08.107.
  • H. Chang, Z. Wan, Y. Zheng, X. Chen, S. Shu, Z. Tu, S.H. Chan, “Energy analysis of a hybrid PEMFC-solar energy residential micro CCHP system combined with an organic Rankine cycle and vapor compression cycle,” Energy Conversion and Management., 142, 374–384, 2017, doi:10.1016/j.enconman.2017.03.057.
  • C. Yue, F. You, Y. Huang, “Thermal and economic analysis of an energy system of an ORC coupled with vehicle air conditioning,” International Journal of Refrigeration., 64, 152–167, 2016, doi:10.1016/j.ijrefrig.2016.01.005.
  • J.M. Calm, “The next generation of refrigerants- historical review, considerations, and Outlook,” International Journal of Refrigeration., 31, 1123–1133, 2008, doi:10.1016/j.ijrefrig.2016.01.005.
  • N.Abas, A.R.Kalair, N.Khan, A.Haider, Z.Saleem, M.S.Saleem, “Natural and synthetic refrigerants, global warming: A review.,” Renew. Sustain. Energy Rev., 90, 557–569, 2018, doi:10.1016/j.rser.2018.03.099.
  • S.Wang, C. Liu, Q. Li, L. Liu, E. Huo, C. Zhang,“Selection principle of working fluid for organic Rankine cycle based on environmental benefits and economic performance,” Applied Thermal Engineering., 178,115598, 2020, doi:10.1016/j.applthermaleng.2020.115598.
  • J.Bao, L. Zhao, “A review of working fluid and expander selections for organic Rankine cycle,” Renew Sustain Energy Rev., 24, 325–42, 2013, doi:10.1016/j.rser.2013.03.040.
  • B. Saleh, “Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy,” Journal of Advanced Research., 7, 651–660, 2016, doi:10.1016/j.jare.2016.06.006.
  • S. Aphornratana, T. Sriveerakul,“Analysis of a combined Rankine-vapour compression refrigeration cycle,” Energy Conversion and Management., 51, 2557–2564, 2010, doi:10.1016/j.enconman.2010.04.016.
  • M. Asim, M.K.H. Leung, Z. Shan, Y. Li, D.Y.C. Leung, M. Ni, “Thermodynamic and thermo-economic analysis of integrated organic Rankine cycle for waste heat recovery from vapor compression refrigeration cycle,” Energy Procedia, 143, 192–198, 2017, doi:10.1016/j.egypro.2017.12.670.
  • F. Molés, J.Navarro-Esbri, B.Peris, A.Mota-Babiloni, K. Kontomaris, “Thermodynamic analysis of a combined organic Rankine cycle and vapor compression cycle system activated with low temperature heat sources using low GWP fluids,” Applied Thermal Engineering., 87, 444–453, 2015, doi:10.1016/j.applthermaleng.2015.04.083.
  • H. Li, X. Bu, L. Wang, Z. Long, Y. Lian, “Hydrocarbon working fluids for a Rankine cycle powered vapor compression refrigeration system using low-grade thermal energy,” Energy Build., 65, 167–172, 2013, doi:10.1016/j.enbuild.2013.06.012.
  • X.Bu, L.Wang, H.Li, “Performance analysis and working fluid selection for geothermal energy-powered organic Rankine-vapor compression air conditioning,” Geotherm Energy., 1,1–14, 2013, doi:10.1186/2195-9706-1-2.
  • H.Wang, R.Peterson, K.Harada, E.Miller, R.Ingram-Goble, L.Fisher, “Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling,” Energy., 36, 447–458, 2011, doi:10.1016/j.energy.2010.10.020.
  • M.O. Nazer, S.M. Zubair, “Analysis of Rankine cycle air-conditioning systems,” ASHRAE Journal., 88, 332–334, 1982.
  • A.N. Egrican, A. Karakas, “Second law analysis of a solar powered Rankine cycle/vapor compression cycle,” Journal of Heat Recovery Systems., 6, 135–141, 1986, doi:10.1016/0198-7593(86)90073-1.
  • K.H.Kim, H.Perez-Blanco, 2015, “Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration,” Applied Thermal Engineering., 91, 964–974, 2015, doi:10.1016/j.applthermaleng.2015.04.062.
  • J. Jeong, Y.T. Kang, “Analysis of a refrigeration cycle driven by refrigerant steam turbine,” International Journal of Refrigeration., 27, 33–41, 2004, doi:10.1016/S0140-7007(03)00101-4.
  • B. Hu, J.Guo, Y.Yang, Y.Shao, “Performance analysis and working fluid selection of organic Rankine steam compression air conditioning driven by ship waste heat,” Energy Reports., 8, 194–202, 2022, doi:10.1016/j.egyr.2022.01.094.
  • S. Khatoon, N.M.A. Almefreji, M.H.Kim, “Thermodynamic study of a combined power and refrigeration system for low-grade heat energy source,” Energies., 14, no. 2, 410, 2021, doi:10.3390/en14020410.
  • E. Cihan and B. Kavasogullari, “Energy and exergy analysis of a combined refrigeration and waste heat driven organic rankine cycle system,” Thermal science., 21, no. 6A, 2621–2631, 2017, doi: 10.2298/TSCI150324002C.
  • B. Kavasogullari, E. Cihan, H. Demir, “Energy and Exergy Analyses of a Refrigerant Pump Integrated Dual-Ejector Refrigeration (DER) System,” Arabian Journal for Science and Engineering., 46, 11633–11644, 2021, doi:10.1007/s13369-021-05541-7.
  • E.O.Küçük and M. Kılıç, “Exergoeconomic and Exergetic Sustainability Analysis of a Combined Dual-Pressure Organic Rankine Cycle and Vapor Compression Refrigeration Cycle,” Sustainability., 15, no. 8, 6987, 2023, doi: 10.3390/su15086987.
  • A.K.S. Al-Sayyab, A. Mota-Babiloni, J.Navarro-Esbrí, “Performance Evaluation of Modified Compound Organic Rankine-Vapour Compression Cycle with Two Cooling Levels, Heating, and Power Generation,” Appl Energy., 334, 120651, 2023, doi: 10.1016/j.apenergy.2023.120651.
  • R. Zhar, A.Allouhi, M.Ghodbane, A.Jamil, K.Lahrech, “Parametric analysis and multi-objective optimization of a combined Organic Rankine Cycle and Vapor Compression Cycle,” Sustainable Energy Technologies and Assessments., 47, 101401, 2021, doi:10.1016/j.seta.2021.101401.
  • Z.Wang, Y.Zhao, X.Xia, S.Zhang, Y.Xiao, X.Zhang, W.Chen, “Experimental study of the thermodynamic performance of the ORC-VCC system with a zeotropic mixture,” Applied Thermal Engineering., 250, 123534, 2024, doi: 10.1016/j.applthermaleng.2024.123534.
  • D.M. Ginosar, L.M. Petkovic, D.P.Guillen,“Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid,” Energy Fuels., 25, 9, 4138–4144, 2011, doi:10.1021/ef200639r.
  • Y.Maalem, Y.Tamene, H.Madani, “Behavior of the thermo-physical properties and performance evaluation of the refrigerants blends of (Fluorocarbon/Hydrocarbon) for cooling cycle,” Recueil de Mécanique., 6, 544-559, 2022, doi:10.5281/zenodo.5918533.
  • J.S. Lim, J.Y. Park, J.W. Kang, B.G. Lee, “Measurement of vapor–liquid equilibria for the binary systems of propane +1,1,1,2-tetrafluoroethane and 1,1,1-trifluoroethane+propane at various temperatures,” Fluid Phase Equilibria., 243, 57-63, 2006, doi:10.1016/j.fluid.2006.02.016. S.Bobbo, R.Stryjek, N.Elvassore, A.Bertucco, “A recirculation apparatus for vapor–liquid equilibrium measurements of refrigerants. Binary mixtures of R600a, R134a and R236fa,” Fluid Phase Equilibria., 150, 343-352, 1998, doi:10.1016/S0378-3812(98)00334-3.
  • Q.N. Ho, B.G. Lee, J.Y. Park, J.D. Kim, J. S. Lim,“Measurement of vapor–liquid equilibria for the binary mixture of propylene (R-1270)+1,1,1,2-tetrafluoroethane (HFC-134a),” Fluid Phase Equilibria., 225, 125-132, 2004, doi:10.1016/j.fluid.2004.08.028.
  • L. Fedele, S. Bobbo, R. Camporese, M. Scattolini, “Isothermal vapour+liquid equilibrium measurements and correlation for the pentafluoroethane+cyclopropane and the cyclopropane+1,1,1,2-tetrafluoroethane binary systems,” Fluid Phase Equilibria., 251, 41-46, 2007, doi:10.1016/j.fluid.2006.10.023.
  • N. Lim, G.Seong, H.Roh, “Vapor-Liquid Equilibria for the 1,1,1,2-Tetrafluoroethane (HFC-134a)+n-Butane (R-600) System,” J. Chem. Eng. Data., 52, 1313-1318, 2007, doi:10.1021/je700041v.
  • Y. Maalem, S. Fedali, H. Madani, Y. Tamene, “Performance analysis of ternary azeotropic mixtures in different vapor compression refrigeration cycles,” International Journal of Refrigeration., 119, 139–151, 2020, doi:10.1016/j.ijrefrig.2020.07.021.
There are 35 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Research Articles
Authors

Youcef Maalem 0009-0001-6400-0179

Hakim Madanı 0000-0003-3742-9305

Publication Date December 1, 2024
Submission Date May 31, 2024
Acceptance Date October 23, 2024
Published in Issue Year 2024

Cite

APA Maalem, Y., & Madanı, H. (2024). Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) as a Substitute for Conventional Hydrocarbons. International Journal of Thermodynamics, 27(4), 30-42. https://doi.org/10.5541/ijot.1493436
AMA Maalem Y, Madanı H. Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) as a Substitute for Conventional Hydrocarbons. International Journal of Thermodynamics. December 2024;27(4):30-42. doi:10.5541/ijot.1493436
Chicago Maalem, Youcef, and Hakim Madanı. “Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) As a Substitute for Conventional Hydrocarbons”. International Journal of Thermodynamics 27, no. 4 (December 2024): 30-42. https://doi.org/10.5541/ijot.1493436.
EndNote Maalem Y, Madanı H (December 1, 2024) Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) as a Substitute for Conventional Hydrocarbons. International Journal of Thermodynamics 27 4 30–42.
IEEE Y. Maalem and H. Madanı, “Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) as a Substitute for Conventional Hydrocarbons”, International Journal of Thermodynamics, vol. 27, no. 4, pp. 30–42, 2024, doi: 10.5541/ijot.1493436.
ISNAD Maalem, Youcef - Madanı, Hakim. “Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) As a Substitute for Conventional Hydrocarbons”. International Journal of Thermodynamics 27/4 (December 2024), 30-42. https://doi.org/10.5541/ijot.1493436.
JAMA Maalem Y, Madanı H. Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) as a Substitute for Conventional Hydrocarbons. International Journal of Thermodynamics. 2024;27:30–42.
MLA Maalem, Youcef and Hakim Madanı. “Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) As a Substitute for Conventional Hydrocarbons”. International Journal of Thermodynamics, vol. 27, no. 4, 2024, pp. 30-42, doi:10.5541/ijot.1493436.
Vancouver Maalem Y, Madanı H. Thermodynamic Efficiency Analysis of a Combined Power and Cooling (ORC-VCRC) System Using Cyclopentane (C5H10) as a Substitute for Conventional Hydrocarbons. International Journal of Thermodynamics. 2024;27(4):30-42.