Research Article
BibTex RIS Cite

Performances Study of Eco-friendly Binary Azeotropic Mixtures Used as Working Fluid in Three Refrigeration Cycles

Year 2024, , 1 - 13, 01.12.2024
https://doi.org/10.5541/ijot.1514168

Abstract

According to the European (F-gas) regulation, all refrigerants with a global warming potential (GWP) above 150 will be out by 2030. Searching for alternative refrigerants that are environmentally friendly has become an urgent challenge for the refrigeration and air-conditioning sector. Based on their environmental advantages and good thermo-physical properties, azeotropic mixtures have recently gained special interest as substitutes for conventional refrigerants. This study aims to compare the performance of three eco-friendly azeotropic mixtures with the common refrigerant R134a in three refrigeration cycles: the basic cycle (BC), the ejector-expansion refrigeration cycle, and the ejector sub-cooled cycle. The mixtures under study are R1234ze+R600a, R1234yf+R600a, and R1234yf+R290. These mixtures have global warming potential (GWP) of 5.668, 3.8688, and 3.2865 respectively, whereas R134a has a GWP of 1430.
To reach this objective a numerical program was developed using MATLAB software to evaluate the coefficient of performance (COP), and the cooling capacity of the three refrigeration cycles using the studied eco-friendly mixtures and were compared with those of the commonly used R134a refrigerant. The entrainment ratio was also compared for the two ejector cycles using these refrigerants. The simulation was realized for condensing temperatures (Tc) selected between 30 and 55°C and evaporation temperatures (Te) ranging between -10 and 10°C. The results have shown that the eco-friendly azeotropic mixture R1234yf+R290 (GWP=3.51) has the best performances compared to the two other mixtures and they are close to those of R134a. On the other hand, the ejector expansion refrigeration cycle has exhibited a high coefficient of performance compared to the basic cycle and ejector sub-cooled cycle, and a high entrainment ratio compared to the ejector sub-cooled cycle for all used refrigerants. However, the ejector sub-cooled cycle gave a better cooling capacity than the other cycles. According to the obtained results, the azeotropic mixture R1234yf+R290 apart from its excellent environmental properties yields better performances in most of cases, this confirms that it could be a suitable substitute for conventional working fluid R134a which has a great global warming potential.

References

  • The European F-gas regulation. available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32024R0573&qid=1724340419698 (accessed March. 04, 2024).
  • W. T. Tsai, “Environmental risks of new-generation fluorocarbons in replacement of potent greenhouse gases,” Int. J. Glob. Warm., vol. 5, no. 1, pp. 84–95, 2013, doi: 10.1504/IJGW.2013.051484.
  • A. A. Kornhauser, “The Use Of An Ejector as Refrigerant Expander,” in IRACC 1990: Proceedings of the International Refrigeration and Air Conditioning Conference, Indiana, pp. 10-19, 1990. doi: 10.1109/IECEC.1990.747930.
  • M. Xing, G. Yan, and J. Yu, “Performance evaluation of an ejector subcooled vapor-compression refrigeration cycle,” Energy Convers. Manag., vol. 92, pp. 431–436, 2015, doi: https://doi.org/10.1016/j.enconman.2014.12.091.
  • X. Yang, N. Zheng, L. Zhao, S. Deng, H. Li, and Z. Yu, “Analysis of a novel combined power and ejector-refrigeration cycle,” Energy Convers. Manag., vol. 108, pp. 266–274, Jan. 2016, doi: 10.1016/j.enconman.2015.11.019.
  • M. Yari and M. Sirousazar, “Performance analysis of the ejector-vapour compression refrigeration cycle,” Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 221, no. 8, pp. 1089–1098, Jan. 2007, doi: 10.1243/09576509JPE484.
  • S. Disawas and S. Wongwises, “Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device,” Int. J. Refrig., vol. 27, pp. 587–594, Sep. 2004, doi: 10.1016/j.ijrefrig.2004.04.002.
  • J. Sarkar, “Ejector enhanced vapor compression refrigeration and heat pump systems - A review,” Renewable and Sustainable Energy Reviews. vol. 16, pp. 6647–6659, Dec. 2012, doi: 10.1016/j.rser.2012.08.007.
  • G. Besagni, R. Mereu, and F. Inzoli, “Ejector refrigeration: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 53, pp. 373–407, 2016, doi: https://doi.org/10.1016/j.rser.2015.08.059.
  • E. Nehdi, L. Kairouani, and M. Bouzaina, “Performance analysis of the vapour compression cycle using ejector as an expander,” Int. J. Energy Res., vol. 31, no. 4, pp. 364–375, Mar. 2007, doi: 10.1002/er.1260.
  • Y. Maalem, S. Fedali, H. Madani, and Y. Tamene, “Performance analysis of ternary azeotropic mixtures in different vapor compression refrigeration cycles,” Int. J. Refrig., vol. 119, pp. 139–151, Nov. 2020, doi: 10.1016/j.ijrefrig.2020.07.021.
  • J. Sarkar, “Performance characteristics of natural-refrigerants- based ejector expansion refrigeration cycles,” Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 223, no. 1, pp. 543–550, May 2009, doi: 10.1243/09576509JPE753.
  • N. Aisyah and H. M. Ariyadi, “Performance Evaluation of R1224yd as Alternative to R123 and R245fa for Vapor Compression Heat Pump System,” Int. J. Thermodyn., vol. 27, no. 5, pp. 13–21, 2024, doi: 10.5541/ijot.1310329.
  • H. Rostamnejad and V. Zare, “Performance improvement of ejector expansion refrigeration cycles employing a booster compressor using different refrigerants: Thermodynamic analysis and optimization,” Int. J. Refrig., vol. 101, pp. 56–70, May. 2019, doi: 10.1016/j.ijrefrig.2019.02.031. Z. Ma, X. Liu, H. Wang, H. Li, and X. Wang, “Off-Design Analysis of Hydrocarbon-based Ejector-Expansion Refrigeration Cycle,” J.Egy.Pro., vol. 105, pp. 4685–4690, May. 2017, doi: 10.1016/j.egypro.2017.03.1015.
  • Y. Maalem, Y. Tamene, and H. Madani, “Performances Investigation of the Eco-friendly Refrigerant R13I1 used as Working Fluid in the Ejector-Expansion Refrigeration Cycle,” Int. J. Thermodyn., vol. 26, no. 3, pp. 25–35, 2023, doi: 10.5541/ijot.1263939.
  • H. Li, F. Cao, X. Bu, L. Wang, and X. Wang, “Performance characteristics of R1234yf ejector-expansion refrigeration cycle,” Appl. Energy., vol. 121, pp. 96–1013 May. 2014, doi: 10.1016/j.apenergy.2014.01.079.
  • C. Lucas, J. Koehler, A. Schroeder, and C. Tischendorf, “Experimentally validated CO2 ejector operation characteristic used in a numerical investigation of ejector cycle,” Int. J. Refrig., vol. 36, pp. 881–891 May. 2013, doi: 10.1016/j.ijrefrig.2012.10.035.
  • D. Calleja-Anta, M. Martínez-Ángeles, L. Nebot-Andres, D. Sánchez, and R. Llopis, “Experimental validation of RE170 / R600 (Dimethyl Ether / Butane) mixture as a superior refrigerant compared to R600a (Isobutane),” Int. J. Refrig., vol. 168, pp. 208–219, 2024, doi: https://doi.org/10.1016/j.ijrefrig.2024.08.008.
  • L. Benbia, S. Fedali, C. Bougriou, and H. Madani, “Influence of azeotropic binary mixtures on single-stage refrigeration system performance,” High Temp. Press., vol. 51, no. 4, pp. 319–339, 2022, doi: 10.32908/hthp.v51.1185.
  • L. Zhao, X. Yang, S. Deng, H. Li, and Z. Yu, “Performance analysis of the ejector-expansion refrigeration cycle using zeotropic mixtures,” Int. J. Refrig., vol. 57, pp. 197–207 Sep. 2015, doi: 10.1016/j.ijrefrig.2015.05.006.
  • M. Mehemmai, H. Grine, M. Hakim, and C. Bougriou, “Performance analysis of ejector refrigeration cycle with zeotropic mixtures,” Int. J. Thermofluid Sci. Technol., vol. 10, no. 4, pp. 1-17, 2023.
  • C. Abdou, H. Madan, and A. Hasseine, “Study of the performances of an ejector refrigeration cycle using CO2- based mixtures in subcritical and transcritical mode,” Int. J. Thermofluid Sci. Technol., vol. 10, no. 3, pp. 1-16, 2023.
  • B. Liu, X. Guo, X. Xi, J. Sun, B. Zhang, and Z. Yang, “Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture,” Energy, vol. 263, p. 125989, 2023, doi: https://doi.org/10.1016/j.energy.2022.125989.
  • K. Sumeru, H. Nasution, and F. N. Ani, “A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle,” Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 4927–4937, Sep. 2012, doi: 10.1016/j.rser.2012.04.058.
  • A. Khalil, M. Fatouh, and E. Elgendy, “Ejector design and theoretical study of R134a ejector refrigeration cycle,” Int. J. Refrig., vol. 34, no. 7, pp. 1684–1698, 2011, doi: 10.1016/j.ijrefrig.2011.01.005.
  • S. He, Y. Li, and R. Z. Wang, “Progress of mathematical modeling on ejectors,” Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 1760–1780, Oct. 2009, doi: 10.1016/j.rser.2008.09.032.
Year 2024, , 1 - 13, 01.12.2024
https://doi.org/10.5541/ijot.1514168

Abstract

References

  • The European F-gas regulation. available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32024R0573&qid=1724340419698 (accessed March. 04, 2024).
  • W. T. Tsai, “Environmental risks of new-generation fluorocarbons in replacement of potent greenhouse gases,” Int. J. Glob. Warm., vol. 5, no. 1, pp. 84–95, 2013, doi: 10.1504/IJGW.2013.051484.
  • A. A. Kornhauser, “The Use Of An Ejector as Refrigerant Expander,” in IRACC 1990: Proceedings of the International Refrigeration and Air Conditioning Conference, Indiana, pp. 10-19, 1990. doi: 10.1109/IECEC.1990.747930.
  • M. Xing, G. Yan, and J. Yu, “Performance evaluation of an ejector subcooled vapor-compression refrigeration cycle,” Energy Convers. Manag., vol. 92, pp. 431–436, 2015, doi: https://doi.org/10.1016/j.enconman.2014.12.091.
  • X. Yang, N. Zheng, L. Zhao, S. Deng, H. Li, and Z. Yu, “Analysis of a novel combined power and ejector-refrigeration cycle,” Energy Convers. Manag., vol. 108, pp. 266–274, Jan. 2016, doi: 10.1016/j.enconman.2015.11.019.
  • M. Yari and M. Sirousazar, “Performance analysis of the ejector-vapour compression refrigeration cycle,” Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 221, no. 8, pp. 1089–1098, Jan. 2007, doi: 10.1243/09576509JPE484.
  • S. Disawas and S. Wongwises, “Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device,” Int. J. Refrig., vol. 27, pp. 587–594, Sep. 2004, doi: 10.1016/j.ijrefrig.2004.04.002.
  • J. Sarkar, “Ejector enhanced vapor compression refrigeration and heat pump systems - A review,” Renewable and Sustainable Energy Reviews. vol. 16, pp. 6647–6659, Dec. 2012, doi: 10.1016/j.rser.2012.08.007.
  • G. Besagni, R. Mereu, and F. Inzoli, “Ejector refrigeration: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 53, pp. 373–407, 2016, doi: https://doi.org/10.1016/j.rser.2015.08.059.
  • E. Nehdi, L. Kairouani, and M. Bouzaina, “Performance analysis of the vapour compression cycle using ejector as an expander,” Int. J. Energy Res., vol. 31, no. 4, pp. 364–375, Mar. 2007, doi: 10.1002/er.1260.
  • Y. Maalem, S. Fedali, H. Madani, and Y. Tamene, “Performance analysis of ternary azeotropic mixtures in different vapor compression refrigeration cycles,” Int. J. Refrig., vol. 119, pp. 139–151, Nov. 2020, doi: 10.1016/j.ijrefrig.2020.07.021.
  • J. Sarkar, “Performance characteristics of natural-refrigerants- based ejector expansion refrigeration cycles,” Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 223, no. 1, pp. 543–550, May 2009, doi: 10.1243/09576509JPE753.
  • N. Aisyah and H. M. Ariyadi, “Performance Evaluation of R1224yd as Alternative to R123 and R245fa for Vapor Compression Heat Pump System,” Int. J. Thermodyn., vol. 27, no. 5, pp. 13–21, 2024, doi: 10.5541/ijot.1310329.
  • H. Rostamnejad and V. Zare, “Performance improvement of ejector expansion refrigeration cycles employing a booster compressor using different refrigerants: Thermodynamic analysis and optimization,” Int. J. Refrig., vol. 101, pp. 56–70, May. 2019, doi: 10.1016/j.ijrefrig.2019.02.031. Z. Ma, X. Liu, H. Wang, H. Li, and X. Wang, “Off-Design Analysis of Hydrocarbon-based Ejector-Expansion Refrigeration Cycle,” J.Egy.Pro., vol. 105, pp. 4685–4690, May. 2017, doi: 10.1016/j.egypro.2017.03.1015.
  • Y. Maalem, Y. Tamene, and H. Madani, “Performances Investigation of the Eco-friendly Refrigerant R13I1 used as Working Fluid in the Ejector-Expansion Refrigeration Cycle,” Int. J. Thermodyn., vol. 26, no. 3, pp. 25–35, 2023, doi: 10.5541/ijot.1263939.
  • H. Li, F. Cao, X. Bu, L. Wang, and X. Wang, “Performance characteristics of R1234yf ejector-expansion refrigeration cycle,” Appl. Energy., vol. 121, pp. 96–1013 May. 2014, doi: 10.1016/j.apenergy.2014.01.079.
  • C. Lucas, J. Koehler, A. Schroeder, and C. Tischendorf, “Experimentally validated CO2 ejector operation characteristic used in a numerical investigation of ejector cycle,” Int. J. Refrig., vol. 36, pp. 881–891 May. 2013, doi: 10.1016/j.ijrefrig.2012.10.035.
  • D. Calleja-Anta, M. Martínez-Ángeles, L. Nebot-Andres, D. Sánchez, and R. Llopis, “Experimental validation of RE170 / R600 (Dimethyl Ether / Butane) mixture as a superior refrigerant compared to R600a (Isobutane),” Int. J. Refrig., vol. 168, pp. 208–219, 2024, doi: https://doi.org/10.1016/j.ijrefrig.2024.08.008.
  • L. Benbia, S. Fedali, C. Bougriou, and H. Madani, “Influence of azeotropic binary mixtures on single-stage refrigeration system performance,” High Temp. Press., vol. 51, no. 4, pp. 319–339, 2022, doi: 10.32908/hthp.v51.1185.
  • L. Zhao, X. Yang, S. Deng, H. Li, and Z. Yu, “Performance analysis of the ejector-expansion refrigeration cycle using zeotropic mixtures,” Int. J. Refrig., vol. 57, pp. 197–207 Sep. 2015, doi: 10.1016/j.ijrefrig.2015.05.006.
  • M. Mehemmai, H. Grine, M. Hakim, and C. Bougriou, “Performance analysis of ejector refrigeration cycle with zeotropic mixtures,” Int. J. Thermofluid Sci. Technol., vol. 10, no. 4, pp. 1-17, 2023.
  • C. Abdou, H. Madan, and A. Hasseine, “Study of the performances of an ejector refrigeration cycle using CO2- based mixtures in subcritical and transcritical mode,” Int. J. Thermofluid Sci. Technol., vol. 10, no. 3, pp. 1-16, 2023.
  • B. Liu, X. Guo, X. Xi, J. Sun, B. Zhang, and Z. Yang, “Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture,” Energy, vol. 263, p. 125989, 2023, doi: https://doi.org/10.1016/j.energy.2022.125989.
  • K. Sumeru, H. Nasution, and F. N. Ani, “A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle,” Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 4927–4937, Sep. 2012, doi: 10.1016/j.rser.2012.04.058.
  • A. Khalil, M. Fatouh, and E. Elgendy, “Ejector design and theoretical study of R134a ejector refrigeration cycle,” Int. J. Refrig., vol. 34, no. 7, pp. 1684–1698, 2011, doi: 10.1016/j.ijrefrig.2011.01.005.
  • S. He, Y. Li, and R. Z. Wang, “Progress of mathematical modeling on ejectors,” Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 1760–1780, Oct. 2009, doi: 10.1016/j.rser.2008.09.032.
There are 26 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Lahcen Mchounchi 0009-0003-9253-3567

Youcef Tamene 0000-0003-2162-7040

Hakim Madanı 0000-0003-3742-9305

Mohammed Mehemmai 0009-0000-6215-0408

Early Pub Date November 6, 2024
Publication Date December 1, 2024
Submission Date July 12, 2024
Acceptance Date October 24, 2024
Published in Issue Year 2024

Cite

APA Mchounchi, L., Tamene, Y., Madanı, H., Mehemmai, M. (2024). Performances Study of Eco-friendly Binary Azeotropic Mixtures Used as Working Fluid in Three Refrigeration Cycles. International Journal of Thermodynamics, 27(4), 1-13. https://doi.org/10.5541/ijot.1514168
AMA Mchounchi L, Tamene Y, Madanı H, Mehemmai M. Performances Study of Eco-friendly Binary Azeotropic Mixtures Used as Working Fluid in Three Refrigeration Cycles. International Journal of Thermodynamics. December 2024;27(4):1-13. doi:10.5541/ijot.1514168
Chicago Mchounchi, Lahcen, Youcef Tamene, Hakim Madanı, and Mohammed Mehemmai. “Performances Study of Eco-Friendly Binary Azeotropic Mixtures Used As Working Fluid in Three Refrigeration Cycles”. International Journal of Thermodynamics 27, no. 4 (December 2024): 1-13. https://doi.org/10.5541/ijot.1514168.
EndNote Mchounchi L, Tamene Y, Madanı H, Mehemmai M (December 1, 2024) Performances Study of Eco-friendly Binary Azeotropic Mixtures Used as Working Fluid in Three Refrigeration Cycles. International Journal of Thermodynamics 27 4 1–13.
IEEE L. Mchounchi, Y. Tamene, H. Madanı, and M. Mehemmai, “Performances Study of Eco-friendly Binary Azeotropic Mixtures Used as Working Fluid in Three Refrigeration Cycles”, International Journal of Thermodynamics, vol. 27, no. 4, pp. 1–13, 2024, doi: 10.5541/ijot.1514168.
ISNAD Mchounchi, Lahcen et al. “Performances Study of Eco-Friendly Binary Azeotropic Mixtures Used As Working Fluid in Three Refrigeration Cycles”. International Journal of Thermodynamics 27/4 (December 2024), 1-13. https://doi.org/10.5541/ijot.1514168.
JAMA Mchounchi L, Tamene Y, Madanı H, Mehemmai M. Performances Study of Eco-friendly Binary Azeotropic Mixtures Used as Working Fluid in Three Refrigeration Cycles. International Journal of Thermodynamics. 2024;27:1–13.
MLA Mchounchi, Lahcen et al. “Performances Study of Eco-Friendly Binary Azeotropic Mixtures Used As Working Fluid in Three Refrigeration Cycles”. International Journal of Thermodynamics, vol. 27, no. 4, 2024, pp. 1-13, doi:10.5541/ijot.1514168.
Vancouver Mchounchi L, Tamene Y, Madanı H, Mehemmai M. Performances Study of Eco-friendly Binary Azeotropic Mixtures Used as Working Fluid in Three Refrigeration Cycles. International Journal of Thermodynamics. 2024;27(4):1-13.