Short Communication
BibTex RIS Cite

Low temperature calorimetry of 3-fluoro-5-(3-pyridinyloxy) benzenamine and N-[3-fluoro-5-(3-pyridinyloxy)phenyl]-N’-3-pyridinyl urea

Year 2017, , 153 - 157, 01.09.2017
https://doi.org/10.5541/eoguijt.292047

Abstract

The investigation on thermodynamic properties of drug
intermediates plays a crucial role in the design and synthesis of new drugs as
well as understanding their biological activities in vivo. In this work, the thermodynamic
properties of two drug intermediates of 3-fluoro-5-(3-pyridinyloxy) benzenamine
and N-[3-fluoro-5-(3-pyridinyloxy)phenyl]-N’-3-pyridinyl urea were studied by
means of low temperature calorimety performed in a Physical Property
Measurement System calorimeter. The heat capacities of these two compounds were
measured over the temperature region from (1.9 to 300) K, and the corresponding
thermodynamic functions were consequently calculated on the basis of the heat
capacity curve fitting. Additionally, a group
additivity method were employed for estimating the heat capacity values
of these two compounds at 298.15 K, which are in good agreement with the values
measured in this work.

References

  • 1. Ghodsi R, Zarghi A, Daraei B, et al. Design, synthesis and biological evaluation of new 2,3-diarylquinoline derivatives as selective cyclooxygenase-2 inhibitors. Bioorg Med Chem. 2010; 18: 1029-1033.
  • 2. Cornall LM, Mathai ML, Hryciw DH, McAinch AJ. GPR120 agonism as a countermeasure against metabolic deseases. Drug Discovery Today. 2014; 19: 670-679.
  • 3. Hara T, Kimura I, Inoue D, et al. Free fatty acid receptors and their role in regulation of energy metabolism. Rev Physiol Biochem Pharmacol. 2013; 164: 77-116.
  • 4. Teerlink JR. A novel approach to improve cardiac performance: cardiac myosin activators. Heart Failure Rev. 2009; 14: 289-298.
  • 5. Offermanns S. Free fatty acid (FFA) and hydroxyl carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol. 2014; 54: 407-434.
  • 6. Azevedo CMG, Watterson KR, Wargent ET, et al. Non-acidic free fatty acid receptor 4 agonists with antidiabetic activity. J Med Chem. 2016; 59: 8868-8878.
  • 7. Morgan BP, Muci A, Lu PP, et al. Discovery of omecamtiv mecarbil the first, selective, small molecule activator of cardiac myosin. ACS Med Chem Lett. 2010; 1: 472-477.
  • 8. Schwaller MA, Dodin G, Aubard J. Thermodynamics of drug-DNA interactions: entropy-driven intercalation and enthalpy-driven outside binding in the ellipticine series. Biopolymers. 1991; 31: 519-527.
  • 9. Sangster J. Phase diagrams and thermodynamic properties of binary systems of drugs. J Phys Chem Ref Data. 1999; 28(4): 889-930.
  • 10. Du J, Wang X, Tan Z, Zou G. Thermodynamic investigation on para-alkyl chain-substituted phenylbicyclohexyl-type liquid crystals with difluorooxymethylene bridge. J Therm Anal Calorim. 2016; doi 10.1007/s10973-016-5852-5.
Year 2017, , 153 - 157, 01.09.2017
https://doi.org/10.5541/eoguijt.292047

Abstract

References

  • 1. Ghodsi R, Zarghi A, Daraei B, et al. Design, synthesis and biological evaluation of new 2,3-diarylquinoline derivatives as selective cyclooxygenase-2 inhibitors. Bioorg Med Chem. 2010; 18: 1029-1033.
  • 2. Cornall LM, Mathai ML, Hryciw DH, McAinch AJ. GPR120 agonism as a countermeasure against metabolic deseases. Drug Discovery Today. 2014; 19: 670-679.
  • 3. Hara T, Kimura I, Inoue D, et al. Free fatty acid receptors and their role in regulation of energy metabolism. Rev Physiol Biochem Pharmacol. 2013; 164: 77-116.
  • 4. Teerlink JR. A novel approach to improve cardiac performance: cardiac myosin activators. Heart Failure Rev. 2009; 14: 289-298.
  • 5. Offermanns S. Free fatty acid (FFA) and hydroxyl carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol. 2014; 54: 407-434.
  • 6. Azevedo CMG, Watterson KR, Wargent ET, et al. Non-acidic free fatty acid receptor 4 agonists with antidiabetic activity. J Med Chem. 2016; 59: 8868-8878.
  • 7. Morgan BP, Muci A, Lu PP, et al. Discovery of omecamtiv mecarbil the first, selective, small molecule activator of cardiac myosin. ACS Med Chem Lett. 2010; 1: 472-477.
  • 8. Schwaller MA, Dodin G, Aubard J. Thermodynamics of drug-DNA interactions: entropy-driven intercalation and enthalpy-driven outside binding in the ellipticine series. Biopolymers. 1991; 31: 519-527.
  • 9. Sangster J. Phase diagrams and thermodynamic properties of binary systems of drugs. J Phys Chem Ref Data. 1999; 28(4): 889-930.
  • 10. Du J, Wang X, Tan Z, Zou G. Thermodynamic investigation on para-alkyl chain-substituted phenylbicyclohexyl-type liquid crystals with difluorooxymethylene bridge. J Therm Anal Calorim. 2016; doi 10.1007/s10973-016-5852-5.
There are 10 citations in total.

Details

Subjects Engineering
Journal Section Regular Original Research Article
Authors

Rongchun Li This is me

Keyan Sun This is me

Yushan Hua This is me

Zhicheng Tan This is me

Quan Shi This is me

Publication Date September 1, 2017
Published in Issue Year 2017

Cite

APA Li, R., Sun, K., Hua, Y., Tan, Z., et al. (2017). Low temperature calorimetry of 3-fluoro-5-(3-pyridinyloxy) benzenamine and N-[3-fluoro-5-(3-pyridinyloxy)phenyl]-N’-3-pyridinyl urea. International Journal of Thermodynamics, 20(3), 153-157. https://doi.org/10.5541/eoguijt.292047
AMA Li R, Sun K, Hua Y, Tan Z, Shi Q. Low temperature calorimetry of 3-fluoro-5-(3-pyridinyloxy) benzenamine and N-[3-fluoro-5-(3-pyridinyloxy)phenyl]-N’-3-pyridinyl urea. International Journal of Thermodynamics. August 2017;20(3):153-157. doi:10.5541/eoguijt.292047
Chicago Li, Rongchun, Keyan Sun, Yushan Hua, Zhicheng Tan, and Quan Shi. “Low Temperature Calorimetry of 3-Fluoro-5-(3-Pyridinyloxy) Benzenamine and N-[3-Fluoro-5-(3-pyridinyloxy)phenyl]-N’-3-Pyridinyl Urea”. International Journal of Thermodynamics 20, no. 3 (August 2017): 153-57. https://doi.org/10.5541/eoguijt.292047.
EndNote Li R, Sun K, Hua Y, Tan Z, Shi Q (August 1, 2017) Low temperature calorimetry of 3-fluoro-5-(3-pyridinyloxy) benzenamine and N-[3-fluoro-5-(3-pyridinyloxy)phenyl]-N’-3-pyridinyl urea. International Journal of Thermodynamics 20 3 153–157.
IEEE R. Li, K. Sun, Y. Hua, Z. Tan, and Q. Shi, “Low temperature calorimetry of 3-fluoro-5-(3-pyridinyloxy) benzenamine and N-[3-fluoro-5-(3-pyridinyloxy)phenyl]-N’-3-pyridinyl urea”, International Journal of Thermodynamics, vol. 20, no. 3, pp. 153–157, 2017, doi: 10.5541/eoguijt.292047.
ISNAD Li, Rongchun et al. “Low Temperature Calorimetry of 3-Fluoro-5-(3-Pyridinyloxy) Benzenamine and N-[3-Fluoro-5-(3-pyridinyloxy)phenyl]-N’-3-Pyridinyl Urea”. International Journal of Thermodynamics 20/3 (August 2017), 153-157. https://doi.org/10.5541/eoguijt.292047.
JAMA Li R, Sun K, Hua Y, Tan Z, Shi Q. Low temperature calorimetry of 3-fluoro-5-(3-pyridinyloxy) benzenamine and N-[3-fluoro-5-(3-pyridinyloxy)phenyl]-N’-3-pyridinyl urea. International Journal of Thermodynamics. 2017;20:153–157.
MLA Li, Rongchun et al. “Low Temperature Calorimetry of 3-Fluoro-5-(3-Pyridinyloxy) Benzenamine and N-[3-Fluoro-5-(3-pyridinyloxy)phenyl]-N’-3-Pyridinyl Urea”. International Journal of Thermodynamics, vol. 20, no. 3, 2017, pp. 153-7, doi:10.5541/eoguijt.292047.
Vancouver Li R, Sun K, Hua Y, Tan Z, Shi Q. Low temperature calorimetry of 3-fluoro-5-(3-pyridinyloxy) benzenamine and N-[3-fluoro-5-(3-pyridinyloxy)phenyl]-N’-3-pyridinyl urea. International Journal of Thermodynamics. 2017;20(3):153-7.