Research Article
BibTex RIS Cite
Year 2017, , 191 - 198, 29.11.2017
https://doi.org/10.5541/eoguijt.299926

Abstract

References

  • [1] M. J. Moran, E. Sciubba, Exergy analysis: Principles and practice, Journal of Engineering for Gas Turbines and Power 116 (2) (1994) 285. doi:10.1115/1.2906818.
  • [2] H. Torío, D. Schmidt, Detailed Exergy Assessment Guidebook for the Built Environment: ECBCS Annex 49 - Low Exergy Systems for High-Performance Buildings and Communities, Fraunhofer Verlag, Stuttgart, 2011. Available: URL http://www.annex49.info/download/Annex49_guideboog.pdf (accessed 04.03.2013)
  • [3] C. Felsmann, LowEx-Fernwärme: Multilevel District Heating ; Zusammenfassung, TUDpress, Dresden, 2011.
  • [4] S. Bargel, Entwicklung eines exergiebasierten Analysemodells zum umfassenden Technologievergleich von Wärmeversorgungssystemen unter Berücksichtigung des Einflusses einer veränderlichen Außentemperatur, (Doctoral dissertation), Ruhr Universität Bochum, Germany. Available: URL http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/BargelStefan/diss.pdf (accessed 01.03.2013)
  • [5] H. Torío, D. Schmidt, Development of system concepts for improving the performance of a waste heat district heating network with exergy analysis, Energy and Buildings 42 (10) (2010) 1601-1609. doi:10.1016/j.enbuild.2010.04.002.
  • [6] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of geothermal district heating systems: an application, Building and Environment 40 (10) (2005) 1309-1322. doi:10.1016/j.buildenv.2004.11.001
  • [7] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of Salihli geothermal district heating system in Manisa, Turkey, International Journal of Energy Research 29 (5) (2005) 393-408. doi:10.1002/er.1056.
  • [8] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of the Gonen geothermal district heating system, Turkey, Geothermics 34 (5) (2005) 632-645. doi:10.1016/j.geothermics.2005.06.001.
  • [9] L. Ozgener, A. Hepbasli, I. Dincer, Effect of reference state on the performance of energy and exergy evaluation of geothermal district heating systems: Balcova example, Building and Environment 41 (6) (2006) 699-709. doi:10.1016/j.buildenv.2005.03.007.
  • [10] K. Çomaklı, B. Yüksel, Ö. Çomaklı, Evaluation of energy and exergy losses in district heating network, Applied Thermal Engineering 24 (7) (2004) 1009-1017. doi:10.1016/j.applthermaleng.2003.11.014.
  • [11] D. Bauer, W. Heidemann, H. Müller-Steinhagen, Central solar heating plants with seasonal heat storage (04.-05.09.07). Available: URL http://www.itw.uni-stuttgart.de/dokumente/Publikationen/publikationen_07-07.pdf (accessed 13.10.2015)
  • [12] T. Schmidt, D. Mangold, H. Müller-Steinhagen, Central solar heating plants with seasonal storage in germany, Solar Energy 76 (1-3) (2004) 165-174. doi:10.1016/j.solener.2003.07.025.
  • [13] Solar Institut Jülich Germany, CARNOT 5.3: Matlab simulink toolbox extension (1999).
  • [14] Robert Klemmer, Modellierung und Analyse von Wärmespeicherszenarien in CARNOT, Master-Thesis, TU Darmstadt, Germany (2014).
  • [15] M. Bodmann, D. Mangold, J. Nußbicker, S. Raab, A. Schenke und T. Schmidt, Solar unterstützte Nahwärme und Langzeit-Wärmespeicher: Forschungsbericht zum BMWA / BMU-Vorhaben, Solar- und Wärmetechnik Stuttgart (SWT) (2005). Available: URL http://www.solites.de/download/literatur/AB-SUN%20V%20FKZ%200329607F.pdf (accessed 27.10.2015)
  • [16] Hendryk Engelbart, Erweiterung des Gebäudegruppenmodells in CARNOT, Master-Thesis, TU Darmstadt, Germany (2015).
  • [17] Andreas Riedel, Sensitivitätsanalysen eines Wärmeversorgungsmodells einer Gebäudegruppe, Bachelor-Thesis, TU Darmstadt, Germany (2015).
  • [18] VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC) (Ed.), VDI Heat Atlas, 2nd Ed. Springer, Berlin and Heidelberg, 2010. doi:10.1007/978-3-540-77877-6.
  • [19] T. Schmidt, M. Benner, W. Heidemann, H. Müller-Steinhagen, Saisonale Wärmespeicher - aktuelle Speichertechnologien und Entwicklungen bei Heißwasser-Wärmespeichern (2003). Available: URL http://www.swt-stuttgart.de/SWT-Forschung/Veroeffentlichungen/Puplic/03-01.pdf (accessed 26.11.2015)
  • [20] A. Jentsch, A novel exergy-based concept of thermodynamic quality and its application to energy system evaluation and process analysis, (Doctoral dissertation), TU Berlin, Germany 2010. Available: URL http://opus.kobv.de/tuberlin/volltexte/2010/2576/ (accessed 01.03.2013)
  • [21] M. A. Rosen, Energy- and exergy-based comparison of coal-fired and nuclear steam power plants, Exergy, An International Journal 1 (3) (2001) 180-192. doi:10.1016/S1164-0235(01)00024-3.
  • [22] Nico Schmitt, Exergy analysis and life-cycle-assessment of an energy system on object level in settlement areas, Master-Thesis, TU Darmstadt, Germany (2014).
  • [23] Agentur für Erneuerbare Energien, Strommix in Deutschland 2012. Available: URL http.//www.unendlich-viel-energie.de/mediathek/grafiken?cont=217 (accessed 02.01.2014)
  • [24] G. P. Hammond, Ondo Akwe, Serge S., Thermodynamic and related analysis of natural gas combined cycle power plants with and without carbon sequestration, International Journal of Energy Research 31 (12) (2007) 1180-1201. doi:10.1002/er.1328.
  • [25] Landesanstalt für Umwelt Messungen und Naturschutz, Wetterdaten. Available: URL http://udo.lubw.baden-wuerttemberg.de/public/ (accessed 23.10.2015)
  • [26] A. Hepbasli, A study on estimating the energetic and exergetic prices of various residential energy sources, Energy and Buildings 40 (3) (2008) 308-315. doi:10.1016/j.enbuild.2007.01.023.

Exergy analyses of heat supply systems for a building cluster with CARNOT

Year 2017, , 191 - 198, 29.11.2017
https://doi.org/10.5541/eoguijt.299926

Abstract

In this paper, a
model to simulate community heating systems is presented and energy and exergy
analyses are conducted for a district heating system with three different heat
generation alternatives. The alternatives are a gas boiler system, a system assisted
by solar thermal collectors with a seasonal thermal energy storage and a gas
boiler as backup, and a system with geothermal borehole heat exchangers
combined with a heat pump. The heat supply of a building cluster of 11
buildings is dynamically modeled using the MATLAB/Simulink based toolbox
CARNOT. The aim is to match the low exergy heating demand with a low exergy
heat source. To cover an energy demand of 263.7 MWh/a, the geothermal
system needs 174.0 MWh/a of exergy, the solar thermal system 269.2 MWh/a
of exergy and the gas boiler system 324.9 MWh/a. A parameter study of the
solar thermal system shows better results for lower supply temperatures and a
lower heat loss coefficient k, but
the results depend strongly on the chosen storage size. It was found that the
use of fossil fuel could be reduced by 43.8 % for the geothermal system
and by 17.6 % for the solar thermal system compared to the gas boiler
system. 

References

  • [1] M. J. Moran, E. Sciubba, Exergy analysis: Principles and practice, Journal of Engineering for Gas Turbines and Power 116 (2) (1994) 285. doi:10.1115/1.2906818.
  • [2] H. Torío, D. Schmidt, Detailed Exergy Assessment Guidebook for the Built Environment: ECBCS Annex 49 - Low Exergy Systems for High-Performance Buildings and Communities, Fraunhofer Verlag, Stuttgart, 2011. Available: URL http://www.annex49.info/download/Annex49_guideboog.pdf (accessed 04.03.2013)
  • [3] C. Felsmann, LowEx-Fernwärme: Multilevel District Heating ; Zusammenfassung, TUDpress, Dresden, 2011.
  • [4] S. Bargel, Entwicklung eines exergiebasierten Analysemodells zum umfassenden Technologievergleich von Wärmeversorgungssystemen unter Berücksichtigung des Einflusses einer veränderlichen Außentemperatur, (Doctoral dissertation), Ruhr Universität Bochum, Germany. Available: URL http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/BargelStefan/diss.pdf (accessed 01.03.2013)
  • [5] H. Torío, D. Schmidt, Development of system concepts for improving the performance of a waste heat district heating network with exergy analysis, Energy and Buildings 42 (10) (2010) 1601-1609. doi:10.1016/j.enbuild.2010.04.002.
  • [6] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of geothermal district heating systems: an application, Building and Environment 40 (10) (2005) 1309-1322. doi:10.1016/j.buildenv.2004.11.001
  • [7] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of Salihli geothermal district heating system in Manisa, Turkey, International Journal of Energy Research 29 (5) (2005) 393-408. doi:10.1002/er.1056.
  • [8] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of the Gonen geothermal district heating system, Turkey, Geothermics 34 (5) (2005) 632-645. doi:10.1016/j.geothermics.2005.06.001.
  • [9] L. Ozgener, A. Hepbasli, I. Dincer, Effect of reference state on the performance of energy and exergy evaluation of geothermal district heating systems: Balcova example, Building and Environment 41 (6) (2006) 699-709. doi:10.1016/j.buildenv.2005.03.007.
  • [10] K. Çomaklı, B. Yüksel, Ö. Çomaklı, Evaluation of energy and exergy losses in district heating network, Applied Thermal Engineering 24 (7) (2004) 1009-1017. doi:10.1016/j.applthermaleng.2003.11.014.
  • [11] D. Bauer, W. Heidemann, H. Müller-Steinhagen, Central solar heating plants with seasonal heat storage (04.-05.09.07). Available: URL http://www.itw.uni-stuttgart.de/dokumente/Publikationen/publikationen_07-07.pdf (accessed 13.10.2015)
  • [12] T. Schmidt, D. Mangold, H. Müller-Steinhagen, Central solar heating plants with seasonal storage in germany, Solar Energy 76 (1-3) (2004) 165-174. doi:10.1016/j.solener.2003.07.025.
  • [13] Solar Institut Jülich Germany, CARNOT 5.3: Matlab simulink toolbox extension (1999).
  • [14] Robert Klemmer, Modellierung und Analyse von Wärmespeicherszenarien in CARNOT, Master-Thesis, TU Darmstadt, Germany (2014).
  • [15] M. Bodmann, D. Mangold, J. Nußbicker, S. Raab, A. Schenke und T. Schmidt, Solar unterstützte Nahwärme und Langzeit-Wärmespeicher: Forschungsbericht zum BMWA / BMU-Vorhaben, Solar- und Wärmetechnik Stuttgart (SWT) (2005). Available: URL http://www.solites.de/download/literatur/AB-SUN%20V%20FKZ%200329607F.pdf (accessed 27.10.2015)
  • [16] Hendryk Engelbart, Erweiterung des Gebäudegruppenmodells in CARNOT, Master-Thesis, TU Darmstadt, Germany (2015).
  • [17] Andreas Riedel, Sensitivitätsanalysen eines Wärmeversorgungsmodells einer Gebäudegruppe, Bachelor-Thesis, TU Darmstadt, Germany (2015).
  • [18] VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC) (Ed.), VDI Heat Atlas, 2nd Ed. Springer, Berlin and Heidelberg, 2010. doi:10.1007/978-3-540-77877-6.
  • [19] T. Schmidt, M. Benner, W. Heidemann, H. Müller-Steinhagen, Saisonale Wärmespeicher - aktuelle Speichertechnologien und Entwicklungen bei Heißwasser-Wärmespeichern (2003). Available: URL http://www.swt-stuttgart.de/SWT-Forschung/Veroeffentlichungen/Puplic/03-01.pdf (accessed 26.11.2015)
  • [20] A. Jentsch, A novel exergy-based concept of thermodynamic quality and its application to energy system evaluation and process analysis, (Doctoral dissertation), TU Berlin, Germany 2010. Available: URL http://opus.kobv.de/tuberlin/volltexte/2010/2576/ (accessed 01.03.2013)
  • [21] M. A. Rosen, Energy- and exergy-based comparison of coal-fired and nuclear steam power plants, Exergy, An International Journal 1 (3) (2001) 180-192. doi:10.1016/S1164-0235(01)00024-3.
  • [22] Nico Schmitt, Exergy analysis and life-cycle-assessment of an energy system on object level in settlement areas, Master-Thesis, TU Darmstadt, Germany (2014).
  • [23] Agentur für Erneuerbare Energien, Strommix in Deutschland 2012. Available: URL http.//www.unendlich-viel-energie.de/mediathek/grafiken?cont=217 (accessed 02.01.2014)
  • [24] G. P. Hammond, Ondo Akwe, Serge S., Thermodynamic and related analysis of natural gas combined cycle power plants with and without carbon sequestration, International Journal of Energy Research 31 (12) (2007) 1180-1201. doi:10.1002/er.1328.
  • [25] Landesanstalt für Umwelt Messungen und Naturschutz, Wetterdaten. Available: URL http://udo.lubw.baden-wuerttemberg.de/public/ (accessed 23.10.2015)
  • [26] A. Hepbasli, A study on estimating the energetic and exergetic prices of various residential energy sources, Energy and Buildings 40 (3) (2008) 308-315. doi:10.1016/j.enbuild.2007.01.023.
There are 26 citations in total.

Details

Subjects Engineering
Journal Section Regular Original Research Article
Authors

Paul Michael Falk

Frank Dammel This is me

Peter Stephan This is me

Publication Date November 29, 2017
Published in Issue Year 2017

Cite

APA Falk, P. M., Dammel, F., & Stephan, P. (2017). Exergy analyses of heat supply systems for a building cluster with CARNOT. International Journal of Thermodynamics, 20(4), 191-198. https://doi.org/10.5541/eoguijt.299926
AMA Falk PM, Dammel F, Stephan P. Exergy analyses of heat supply systems for a building cluster with CARNOT. International Journal of Thermodynamics. November 2017;20(4):191-198. doi:10.5541/eoguijt.299926
Chicago Falk, Paul Michael, Frank Dammel, and Peter Stephan. “Exergy Analyses of Heat Supply Systems for a Building Cluster With CARNOT”. International Journal of Thermodynamics 20, no. 4 (November 2017): 191-98. https://doi.org/10.5541/eoguijt.299926.
EndNote Falk PM, Dammel F, Stephan P (November 1, 2017) Exergy analyses of heat supply systems for a building cluster with CARNOT. International Journal of Thermodynamics 20 4 191–198.
IEEE P. M. Falk, F. Dammel, and P. Stephan, “Exergy analyses of heat supply systems for a building cluster with CARNOT”, International Journal of Thermodynamics, vol. 20, no. 4, pp. 191–198, 2017, doi: 10.5541/eoguijt.299926.
ISNAD Falk, Paul Michael et al. “Exergy Analyses of Heat Supply Systems for a Building Cluster With CARNOT”. International Journal of Thermodynamics 20/4 (November 2017), 191-198. https://doi.org/10.5541/eoguijt.299926.
JAMA Falk PM, Dammel F, Stephan P. Exergy analyses of heat supply systems for a building cluster with CARNOT. International Journal of Thermodynamics. 2017;20:191–198.
MLA Falk, Paul Michael et al. “Exergy Analyses of Heat Supply Systems for a Building Cluster With CARNOT”. International Journal of Thermodynamics, vol. 20, no. 4, 2017, pp. 191-8, doi:10.5541/eoguijt.299926.
Vancouver Falk PM, Dammel F, Stephan P. Exergy analyses of heat supply systems for a building cluster with CARNOT. International Journal of Thermodynamics. 2017;20(4):191-8.