Year 2017,
, 191 - 198, 29.11.2017
Paul Michael Falk
,
Frank Dammel
Peter Stephan
References
- [1] M. J. Moran, E. Sciubba, Exergy analysis: Principles and practice, Journal of Engineering for Gas Turbines and Power 116 (2) (1994) 285. doi:10.1115/1.2906818.
- [2] H. Torío, D. Schmidt, Detailed Exergy Assessment Guidebook for the Built Environment: ECBCS Annex 49 - Low Exergy Systems for High-Performance Buildings and Communities, Fraunhofer Verlag, Stuttgart, 2011. Available: URL http://www.annex49.info/download/Annex49_guideboog.pdf (accessed 04.03.2013)
- [3] C. Felsmann, LowEx-Fernwärme: Multilevel District Heating ; Zusammenfassung, TUDpress, Dresden, 2011.
- [4] S. Bargel, Entwicklung eines exergiebasierten Analysemodells zum umfassenden Technologievergleich von Wärmeversorgungssystemen unter Berücksichtigung des Einflusses einer veränderlichen Außentemperatur, (Doctoral dissertation), Ruhr Universität Bochum, Germany. Available: URL http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/BargelStefan/diss.pdf (accessed 01.03.2013)
- [5] H. Torío, D. Schmidt, Development of system concepts for improving the performance of a waste heat district heating network with exergy analysis, Energy and Buildings 42 (10) (2010) 1601-1609. doi:10.1016/j.enbuild.2010.04.002.
- [6] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of geothermal district heating systems: an application, Building and Environment 40 (10) (2005) 1309-1322. doi:10.1016/j.buildenv.2004.11.001
- [7] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of Salihli geothermal district heating system in Manisa, Turkey, International Journal of Energy Research 29 (5) (2005) 393-408. doi:10.1002/er.1056.
- [8] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of the Gonen geothermal district heating system, Turkey, Geothermics 34 (5) (2005) 632-645. doi:10.1016/j.geothermics.2005.06.001.
- [9] L. Ozgener, A. Hepbasli, I. Dincer, Effect of reference state on the performance of energy and exergy evaluation of geothermal district heating systems: Balcova example, Building and Environment 41 (6) (2006) 699-709. doi:10.1016/j.buildenv.2005.03.007.
- [10] K. Çomaklı, B. Yüksel, Ö. Çomaklı, Evaluation of energy and exergy losses in district heating network, Applied Thermal Engineering 24 (7) (2004) 1009-1017. doi:10.1016/j.applthermaleng.2003.11.014.
- [11] D. Bauer, W. Heidemann, H. Müller-Steinhagen, Central solar heating plants with seasonal heat storage (04.-05.09.07). Available: URL http://www.itw.uni-stuttgart.de/dokumente/Publikationen/publikationen_07-07.pdf (accessed 13.10.2015)
- [12] T. Schmidt, D. Mangold, H. Müller-Steinhagen, Central solar heating plants with seasonal storage in germany, Solar Energy 76 (1-3) (2004) 165-174. doi:10.1016/j.solener.2003.07.025.
- [13] Solar Institut Jülich Germany, CARNOT 5.3: Matlab simulink toolbox extension (1999).
- [14] Robert Klemmer, Modellierung und Analyse von Wärmespeicherszenarien in CARNOT, Master-Thesis, TU Darmstadt, Germany (2014).
- [15] M. Bodmann, D. Mangold, J. Nußbicker, S. Raab, A. Schenke und T. Schmidt, Solar unterstützte Nahwärme und Langzeit-Wärmespeicher: Forschungsbericht zum BMWA / BMU-Vorhaben, Solar- und Wärmetechnik Stuttgart (SWT) (2005). Available: URL http://www.solites.de/download/literatur/AB-SUN%20V%20FKZ%200329607F.pdf (accessed 27.10.2015)
- [16] Hendryk Engelbart, Erweiterung des Gebäudegruppenmodells in CARNOT, Master-Thesis, TU Darmstadt, Germany (2015).
- [17] Andreas Riedel, Sensitivitätsanalysen eines Wärmeversorgungsmodells einer Gebäudegruppe, Bachelor-Thesis, TU Darmstadt, Germany (2015).
- [18] VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC) (Ed.), VDI Heat Atlas, 2nd Ed. Springer, Berlin and Heidelberg, 2010. doi:10.1007/978-3-540-77877-6.
- [19] T. Schmidt, M. Benner, W. Heidemann, H. Müller-Steinhagen, Saisonale Wärmespeicher - aktuelle Speichertechnologien und Entwicklungen bei Heißwasser-Wärmespeichern (2003). Available: URL http://www.swt-stuttgart.de/SWT-Forschung/Veroeffentlichungen/Puplic/03-01.pdf (accessed 26.11.2015)
- [20] A. Jentsch, A novel exergy-based concept of thermodynamic quality and its application to energy system evaluation and process analysis, (Doctoral dissertation), TU Berlin, Germany 2010. Available: URL http://opus.kobv.de/tuberlin/volltexte/2010/2576/ (accessed 01.03.2013)
- [21] M. A. Rosen, Energy- and exergy-based comparison of coal-fired and nuclear steam power plants, Exergy, An International Journal 1 (3) (2001) 180-192. doi:10.1016/S1164-0235(01)00024-3.
- [22] Nico Schmitt, Exergy analysis and life-cycle-assessment of an energy system on object level in settlement areas, Master-Thesis, TU Darmstadt, Germany (2014).
- [23] Agentur für Erneuerbare Energien, Strommix in Deutschland 2012. Available: URL http.//www.unendlich-viel-energie.de/mediathek/grafiken?cont=217 (accessed 02.01.2014)
- [24] G. P. Hammond, Ondo Akwe, Serge S., Thermodynamic and related analysis of natural gas combined cycle power plants with and without carbon sequestration, International Journal of Energy Research 31 (12) (2007) 1180-1201. doi:10.1002/er.1328.
- [25] Landesanstalt für Umwelt Messungen und Naturschutz, Wetterdaten. Available: URL http://udo.lubw.baden-wuerttemberg.de/public/ (accessed 23.10.2015)
- [26] A. Hepbasli, A study on estimating the energetic and exergetic prices of various residential energy sources, Energy and Buildings 40 (3) (2008) 308-315. doi:10.1016/j.enbuild.2007.01.023.
Exergy analyses of heat supply systems for a building cluster with CARNOT
Year 2017,
, 191 - 198, 29.11.2017
Paul Michael Falk
,
Frank Dammel
Peter Stephan
Abstract
In this paper, a
model to simulate community heating systems is presented and energy and exergy
analyses are conducted for a district heating system with three different heat
generation alternatives. The alternatives are a gas boiler system, a system assisted
by solar thermal collectors with a seasonal thermal energy storage and a gas
boiler as backup, and a system with geothermal borehole heat exchangers
combined with a heat pump. The heat supply of a building cluster of 11
buildings is dynamically modeled using the MATLAB/Simulink based toolbox
CARNOT. The aim is to match the low exergy heating demand with a low exergy
heat source. To cover an energy demand of 263.7 MWh/a, the geothermal
system needs 174.0 MWh/a of exergy, the solar thermal system 269.2 MWh/a
of exergy and the gas boiler system 324.9 MWh/a. A parameter study of the
solar thermal system shows better results for lower supply temperatures and a
lower heat loss coefficient k, but
the results depend strongly on the chosen storage size. It was found that the
use of fossil fuel could be reduced by 43.8 % for the geothermal system
and by 17.6 % for the solar thermal system compared to the gas boiler
system.
References
- [1] M. J. Moran, E. Sciubba, Exergy analysis: Principles and practice, Journal of Engineering for Gas Turbines and Power 116 (2) (1994) 285. doi:10.1115/1.2906818.
- [2] H. Torío, D. Schmidt, Detailed Exergy Assessment Guidebook for the Built Environment: ECBCS Annex 49 - Low Exergy Systems for High-Performance Buildings and Communities, Fraunhofer Verlag, Stuttgart, 2011. Available: URL http://www.annex49.info/download/Annex49_guideboog.pdf (accessed 04.03.2013)
- [3] C. Felsmann, LowEx-Fernwärme: Multilevel District Heating ; Zusammenfassung, TUDpress, Dresden, 2011.
- [4] S. Bargel, Entwicklung eines exergiebasierten Analysemodells zum umfassenden Technologievergleich von Wärmeversorgungssystemen unter Berücksichtigung des Einflusses einer veränderlichen Außentemperatur, (Doctoral dissertation), Ruhr Universität Bochum, Germany. Available: URL http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/BargelStefan/diss.pdf (accessed 01.03.2013)
- [5] H. Torío, D. Schmidt, Development of system concepts for improving the performance of a waste heat district heating network with exergy analysis, Energy and Buildings 42 (10) (2010) 1601-1609. doi:10.1016/j.enbuild.2010.04.002.
- [6] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of geothermal district heating systems: an application, Building and Environment 40 (10) (2005) 1309-1322. doi:10.1016/j.buildenv.2004.11.001
- [7] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of Salihli geothermal district heating system in Manisa, Turkey, International Journal of Energy Research 29 (5) (2005) 393-408. doi:10.1002/er.1056.
- [8] L. Ozgener, A. Hepbasli, I. Dincer, Energy and exergy analysis of the Gonen geothermal district heating system, Turkey, Geothermics 34 (5) (2005) 632-645. doi:10.1016/j.geothermics.2005.06.001.
- [9] L. Ozgener, A. Hepbasli, I. Dincer, Effect of reference state on the performance of energy and exergy evaluation of geothermal district heating systems: Balcova example, Building and Environment 41 (6) (2006) 699-709. doi:10.1016/j.buildenv.2005.03.007.
- [10] K. Çomaklı, B. Yüksel, Ö. Çomaklı, Evaluation of energy and exergy losses in district heating network, Applied Thermal Engineering 24 (7) (2004) 1009-1017. doi:10.1016/j.applthermaleng.2003.11.014.
- [11] D. Bauer, W. Heidemann, H. Müller-Steinhagen, Central solar heating plants with seasonal heat storage (04.-05.09.07). Available: URL http://www.itw.uni-stuttgart.de/dokumente/Publikationen/publikationen_07-07.pdf (accessed 13.10.2015)
- [12] T. Schmidt, D. Mangold, H. Müller-Steinhagen, Central solar heating plants with seasonal storage in germany, Solar Energy 76 (1-3) (2004) 165-174. doi:10.1016/j.solener.2003.07.025.
- [13] Solar Institut Jülich Germany, CARNOT 5.3: Matlab simulink toolbox extension (1999).
- [14] Robert Klemmer, Modellierung und Analyse von Wärmespeicherszenarien in CARNOT, Master-Thesis, TU Darmstadt, Germany (2014).
- [15] M. Bodmann, D. Mangold, J. Nußbicker, S. Raab, A. Schenke und T. Schmidt, Solar unterstützte Nahwärme und Langzeit-Wärmespeicher: Forschungsbericht zum BMWA / BMU-Vorhaben, Solar- und Wärmetechnik Stuttgart (SWT) (2005). Available: URL http://www.solites.de/download/literatur/AB-SUN%20V%20FKZ%200329607F.pdf (accessed 27.10.2015)
- [16] Hendryk Engelbart, Erweiterung des Gebäudegruppenmodells in CARNOT, Master-Thesis, TU Darmstadt, Germany (2015).
- [17] Andreas Riedel, Sensitivitätsanalysen eines Wärmeversorgungsmodells einer Gebäudegruppe, Bachelor-Thesis, TU Darmstadt, Germany (2015).
- [18] VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC) (Ed.), VDI Heat Atlas, 2nd Ed. Springer, Berlin and Heidelberg, 2010. doi:10.1007/978-3-540-77877-6.
- [19] T. Schmidt, M. Benner, W. Heidemann, H. Müller-Steinhagen, Saisonale Wärmespeicher - aktuelle Speichertechnologien und Entwicklungen bei Heißwasser-Wärmespeichern (2003). Available: URL http://www.swt-stuttgart.de/SWT-Forschung/Veroeffentlichungen/Puplic/03-01.pdf (accessed 26.11.2015)
- [20] A. Jentsch, A novel exergy-based concept of thermodynamic quality and its application to energy system evaluation and process analysis, (Doctoral dissertation), TU Berlin, Germany 2010. Available: URL http://opus.kobv.de/tuberlin/volltexte/2010/2576/ (accessed 01.03.2013)
- [21] M. A. Rosen, Energy- and exergy-based comparison of coal-fired and nuclear steam power plants, Exergy, An International Journal 1 (3) (2001) 180-192. doi:10.1016/S1164-0235(01)00024-3.
- [22] Nico Schmitt, Exergy analysis and life-cycle-assessment of an energy system on object level in settlement areas, Master-Thesis, TU Darmstadt, Germany (2014).
- [23] Agentur für Erneuerbare Energien, Strommix in Deutschland 2012. Available: URL http.//www.unendlich-viel-energie.de/mediathek/grafiken?cont=217 (accessed 02.01.2014)
- [24] G. P. Hammond, Ondo Akwe, Serge S., Thermodynamic and related analysis of natural gas combined cycle power plants with and without carbon sequestration, International Journal of Energy Research 31 (12) (2007) 1180-1201. doi:10.1002/er.1328.
- [25] Landesanstalt für Umwelt Messungen und Naturschutz, Wetterdaten. Available: URL http://udo.lubw.baden-wuerttemberg.de/public/ (accessed 23.10.2015)
- [26] A. Hepbasli, A study on estimating the energetic and exergetic prices of various residential energy sources, Energy and Buildings 40 (3) (2008) 308-315. doi:10.1016/j.enbuild.2007.01.023.