Research Article
BibTex RIS Cite
Year 2017, , 229 - 237, 29.11.2017
https://doi.org/10.5541/eoguijt.359499

Abstract

References

  • [1] Ministério da Ciência, Tecnologia e Inovação. Estimativas Anuais de Emissões de Gases de Efeito Estufa no Brasil [Annual Estimates of Greenhouse Gas Emissions in Brazil]. 2ª Edição [2nd Edition]; 2014. [In portuguese]. [2] Statistisk sentralbyrå. Emissions of greenhouse gases, 1990-2014, final figures – Available at <http://www.ssb.no/en/natur-og-miljo/statistikker/klimagassn/aar-endelige/2015-12-18> [accessed 3.2.2016]. [3] M. Absi Halabi, A. Al-Qattan, A. Al-Otaibi, “Application of solar energy in the oil industry - Current status and future prospects,” Renewable and Sustainable Energy Reviews, 43, 296–314 2014. [4] T.-V. Nguyen, M. Voldsund, B. Elmegaard, I. S. Ertesvåg, S. Kjelstrup, “On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing,” Energy, 73, 264–281, 2014a. [5] S. De Oliveira, M. Van Hombeeck, “Exergy analysis of petroleum separation processes in offshore platforms,” Energy Conversion and Management, doi:10.1016/S0196-8904(96)00219-1. [6] T.-V. Nguyen, T. G. Fülöp, P. Breuhaus, B. Elmegaard, “Life performance of oil and gas platforms: Site integration and thermodynamic evaluation,” Energy, 73, 282–301, 2014b. [7] T.-V. Nguyen, L. Pierobon, B. Elmegaard, F. Haglind, P. Breuhaus, & M. Voldsund, “Exergetic assessment of energy systems on North Sea oil and gas platforms,” Energy, doi:10.1016/j.energy.2013.03.011. [8] M. Voldsund, T. Nguyen, B. Elmegaard, I. S. Ertesvåg, “Exergy destruction and losses on four North Sea offshore platforms : A comparative study of the oil and gas processing plants,” Energy, doi:10.1016/j.energy.2014.02. 080. [9] M. Voldsund, I. S. Ertesvåg, W. He, S. Kjelstrup, “Exergy analysis of the oil and gas processing on a North Sea oil platform a real production day,” Energy, doi:10.1016/j.energy.2013.02.038. [10] B. M. Mazetto, J. A. M. Silva, S. Oliveira, “Are ORCs a good option for waste heat recovery in a petroleum refinery?” International Journal of Thermodynamics-IJoT, doi:10.5541/ijot.5000070476. [11] L. Pierobon, T.-V. Nguyen, U. Larsen, F. Haglind, B. Elmegaard, “Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform,” Energy, doi:10.1016/j.energy.2013.05.039. [12] M.-H. Yang, R.-H. Yeh, “Analyzing the optimization of an organic Rankine cycle system for recovering waste heat from a large marine engine containing a cooling water system,” Energy Conversion and Management, doi:10.1016/j.enconman.2014.09.044. [13] M.-H. Yang, R.-H. Yeh, “Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine,” Applied Energy, doi:10.1016/j.apenergy.2015.03. 083. [14] J. E. Barrera, E. Bazzo, E. Kami, “Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles,” Energy, doi:10.1016/j.energy.2015.03.091. [15] S. Glover, R. Douglas, M. De Rosa, X. Zhang, L. Glover, “Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery,” Energy, http://doi.org/10.1016/j.energy. 2015.10.004. [16] G. Kosmadakis, D. Manolakos, G. Papadakis, “Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions,” Applied Thermal Engineering, http://doi.org/10.1016/j.applthermaleng. 2015.09.082. [17] V. L. Le, M. Feidt, A. Kheiri, S. Pelloux-prayer, “Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids,” Energy, http://doi.org/10.1016/j.energy.2013.12 .027. [18] A. Desideri, S. Gusev, M. Van Den Broek, V. Lemort, “Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications,” Energy, http://doi.org/10. 1016/j.energy.2015.12.012. [19] P. K. Takahashi, A. Trenka, “Ocean thermal energy conversion: Its promise as a total resource system,” Energy, doi:10.1016/0360-5442(92)90073-9. [20] W. H. Avery, C. Wu, Renewable energy from the oceans: a guide to OTEC, OXFORD UNIVERSITY PRESS. 1994. p. 1. [21] H. Semmari, D. Stitou, S. Mauran, “A novel Carnot-based cycle for ocean thermal energy conversion,” Energy, doi:10.1016/j.energy.2012.04.017. [22] H. Yuan, N. Mei, P. Zhou, “Performance analysis of an absorption power cycle for ocean thermal energy conversion,” Energy Conversion and Management, doi:10.1016/j.enconman.2014.07.015. [23] M.-H. Yang, R.-H. Yeh, “Analysis of optimization in an OTEC plant using organic Rankine cycle,” Renewable Energy, doi:10.1016/j.renene.2014.01. 029. [24] J. Brandsar, (2012). Offshore Rankine Cycles (MSc Thesis). Trondheim, Norway. Norwegian University of Science and Technology. [25] J. A. M. Pereira, J. D. De Jesus, E. A. De Carvalho, “Caracterização Dos Sistemas De Geração Elétrica dos FPSOs em Operação no Brasil [Characterization of Eletric Generation Systems of FPSOs in Brazil],” ENGEVISTA, 17, 433–443, 2015. [In Portuguese]. [26] L. Pierobon, T.-V. Nguyen, U. Larsen, F. Haglind, “Optimization of Organic Rankine Cycles for Off-shore Applications,” in Proceedings of ASME Turbo Expo 2013. San Antonio, USA. [27] PETROBRAS. Petrobras – Fatos e dados – Nove plataformas que vão ampliar a produção de petróleo no Brasil [Petrobras – Facts and data – Nine platforms that will increase the production of oil in Brazil] – Available at <http://www.petrobras.com.br/fatos-e-dados/nove-plataformas-que-vao-ampliar-a-producao-de-petroleo-no-brasil.htm> [accessed 3.2.2016]. [In Portuguese]. [28] MarineBio Conservation Society. The Ocean and Temperature - MarineBio.org – Available at <http://marinebio.org/oceans/temperature/> [accessed 6.3.2015]. [29] W. L. M. Neto (2015), Estudo do desempenho de um sistema de resfriamento de ar de alimentação de turbinas a gás para aplicação offshore utilizando água do mar [Study of the performance of a gas turbine cooling air supply system for offshore applications using sea water] (bachelor thesis). Salvador, Brazil. Federal University of Bahia. [In Portuguese]. [30] T. S. Metcalfe, P. Charbonneau, “Stellar Structure Modeling using a Parallel Genetic Algorithm for Objective Global Optimization,” doi:10.1016/S0021-9991(02)00053-0. [31] Klein. Engineering Equation Solver (EES), Academic Professional V9.901, 2015. [32] C. Kalra, G. Becquin, J. Jackson, A. L. Laursen, H. Chen, K. Myers, H. Klockow, J. Zia, “High-potential working fluids and cycle concepts for next- generation binary organic rankine cycle for enhanced geothermal systems,” In Thirty-Seventh Workshop on Geothermal Reservoir Engineering, 2012. Stanford, USA. [33] A. Schuster, S. Karellas, R. Aumann, “Efficiency optimization potential in supercritical Organic Rankine Cycles,” http://doi.org/10.1016/j.energy.2009.06.019. [34] C. R. Nelson, “Application of Refrigerant Working Fluids for Mobile Organic Rankine Cycles,” 3rd International Seminar on ORC Power Systems, Brussels, Belgium, 2015. [35] F. J. Fernández, M. M. Prieto, I. Suárez, “Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids,” Energy, 36, 5239-5249, 2011. doi:10.1016/j.energy.2011.06.028. [36] Y. Dai, J. Wang, L. Gao, “Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery,” Energy Conversion and Management, doi:10.1016/j.enconman.2008.10.018. [37] B. Saleh, G. Koglbauer, M. Wendland, J. Fischer, “Working fluids for low-temperature organic Rankine cycles,” Energy, doi.org/10.1016/j.energy.2006.07.001. [38] S. Lecompte, H. Huisseune, M. Van Den Broek, B. Vanslambrouck, M. De Paepe, “Review of organic Rankine cycle (ORC) architectures for waste heat recovery,” Renewable and Sustainable Energy Reviews, http://doi.org/10.1016/j.rser.2015.03.089. [39] Siemens AG. Industrial RB211 Gas Turbines – Available at < http://sie.ag/2tJvWjT> [accessed 26.7.2017]. [40] Bahia Gás. Gás Natural – Tabela Tarifária [Natural Gas – Tax Table] – Available at < http://www.bahiagas.com.br/gas-natural/tabela-tarifaria/> [accessed 26.7.2017]. [In Portuguese].

Deep Water Cooled ORC for Offshore Floating Oil Platform Applications

Year 2017, , 229 - 237, 29.11.2017
https://doi.org/10.5541/eoguijt.359499

Abstract



Due to global warming, environmental
pollution and cost reduction, increasing efficiency of electricity conversion
has become a key issue for the offshore market. This paper proposes an Organic
Rankine Cycle (ORC), which uses heat waste from exhaust gases of an FPSO
(Floating, Production, Storage and Offloading unit) as heating source, and deep
ocean water as cooling source. A genetic algorithm optimization was conducted
targeting maximization of net power output, by taking in to consideration of 23
working fluids. Expander inlet temperature and pressure were set as independent
variables. The analysis encompasses subcritical or supercritical conditions and
recuperation was included in a second version of the system as an option. The
first configuration presented ethanol as optimal fluid, followed by toluene and
the second configuration indicated cyclohexane followed by ethanol. Use of
recuperation, when feasible, increased power output specially for cycles
operating with dry and isentropic fluids, presenting an average contribution of
22.7%. Net power and efficiency results from ORC using deep sea water in
condenser were presented and compared with ORC using shallow ocean water as
cooling source and with Carnot efficiency operating under the same
temperatures. Use of deep water raised net power output by 23.3% (cyclohexane recuperative
ORC) and 12.5% (ethanol non-recuperative ORC) for the optimal configurations.




References

  • [1] Ministério da Ciência, Tecnologia e Inovação. Estimativas Anuais de Emissões de Gases de Efeito Estufa no Brasil [Annual Estimates of Greenhouse Gas Emissions in Brazil]. 2ª Edição [2nd Edition]; 2014. [In portuguese]. [2] Statistisk sentralbyrå. Emissions of greenhouse gases, 1990-2014, final figures – Available at <http://www.ssb.no/en/natur-og-miljo/statistikker/klimagassn/aar-endelige/2015-12-18> [accessed 3.2.2016]. [3] M. Absi Halabi, A. Al-Qattan, A. Al-Otaibi, “Application of solar energy in the oil industry - Current status and future prospects,” Renewable and Sustainable Energy Reviews, 43, 296–314 2014. [4] T.-V. Nguyen, M. Voldsund, B. Elmegaard, I. S. Ertesvåg, S. Kjelstrup, “On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing,” Energy, 73, 264–281, 2014a. [5] S. De Oliveira, M. Van Hombeeck, “Exergy analysis of petroleum separation processes in offshore platforms,” Energy Conversion and Management, doi:10.1016/S0196-8904(96)00219-1. [6] T.-V. Nguyen, T. G. Fülöp, P. Breuhaus, B. Elmegaard, “Life performance of oil and gas platforms: Site integration and thermodynamic evaluation,” Energy, 73, 282–301, 2014b. [7] T.-V. Nguyen, L. Pierobon, B. Elmegaard, F. Haglind, P. Breuhaus, & M. Voldsund, “Exergetic assessment of energy systems on North Sea oil and gas platforms,” Energy, doi:10.1016/j.energy.2013.03.011. [8] M. Voldsund, T. Nguyen, B. Elmegaard, I. S. Ertesvåg, “Exergy destruction and losses on four North Sea offshore platforms : A comparative study of the oil and gas processing plants,” Energy, doi:10.1016/j.energy.2014.02. 080. [9] M. Voldsund, I. S. Ertesvåg, W. He, S. Kjelstrup, “Exergy analysis of the oil and gas processing on a North Sea oil platform a real production day,” Energy, doi:10.1016/j.energy.2013.02.038. [10] B. M. Mazetto, J. A. M. Silva, S. Oliveira, “Are ORCs a good option for waste heat recovery in a petroleum refinery?” International Journal of Thermodynamics-IJoT, doi:10.5541/ijot.5000070476. [11] L. Pierobon, T.-V. Nguyen, U. Larsen, F. Haglind, B. Elmegaard, “Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform,” Energy, doi:10.1016/j.energy.2013.05.039. [12] M.-H. Yang, R.-H. Yeh, “Analyzing the optimization of an organic Rankine cycle system for recovering waste heat from a large marine engine containing a cooling water system,” Energy Conversion and Management, doi:10.1016/j.enconman.2014.09.044. [13] M.-H. Yang, R.-H. Yeh, “Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine,” Applied Energy, doi:10.1016/j.apenergy.2015.03. 083. [14] J. E. Barrera, E. Bazzo, E. Kami, “Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles,” Energy, doi:10.1016/j.energy.2015.03.091. [15] S. Glover, R. Douglas, M. De Rosa, X. Zhang, L. Glover, “Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery,” Energy, http://doi.org/10.1016/j.energy. 2015.10.004. [16] G. Kosmadakis, D. Manolakos, G. Papadakis, “Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions,” Applied Thermal Engineering, http://doi.org/10.1016/j.applthermaleng. 2015.09.082. [17] V. L. Le, M. Feidt, A. Kheiri, S. Pelloux-prayer, “Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids,” Energy, http://doi.org/10.1016/j.energy.2013.12 .027. [18] A. Desideri, S. Gusev, M. Van Den Broek, V. Lemort, “Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications,” Energy, http://doi.org/10. 1016/j.energy.2015.12.012. [19] P. K. Takahashi, A. Trenka, “Ocean thermal energy conversion: Its promise as a total resource system,” Energy, doi:10.1016/0360-5442(92)90073-9. [20] W. H. Avery, C. Wu, Renewable energy from the oceans: a guide to OTEC, OXFORD UNIVERSITY PRESS. 1994. p. 1. [21] H. Semmari, D. Stitou, S. Mauran, “A novel Carnot-based cycle for ocean thermal energy conversion,” Energy, doi:10.1016/j.energy.2012.04.017. [22] H. Yuan, N. Mei, P. Zhou, “Performance analysis of an absorption power cycle for ocean thermal energy conversion,” Energy Conversion and Management, doi:10.1016/j.enconman.2014.07.015. [23] M.-H. Yang, R.-H. Yeh, “Analysis of optimization in an OTEC plant using organic Rankine cycle,” Renewable Energy, doi:10.1016/j.renene.2014.01. 029. [24] J. Brandsar, (2012). Offshore Rankine Cycles (MSc Thesis). Trondheim, Norway. Norwegian University of Science and Technology. [25] J. A. M. Pereira, J. D. De Jesus, E. A. De Carvalho, “Caracterização Dos Sistemas De Geração Elétrica dos FPSOs em Operação no Brasil [Characterization of Eletric Generation Systems of FPSOs in Brazil],” ENGEVISTA, 17, 433–443, 2015. [In Portuguese]. [26] L. Pierobon, T.-V. Nguyen, U. Larsen, F. Haglind, “Optimization of Organic Rankine Cycles for Off-shore Applications,” in Proceedings of ASME Turbo Expo 2013. San Antonio, USA. [27] PETROBRAS. Petrobras – Fatos e dados – Nove plataformas que vão ampliar a produção de petróleo no Brasil [Petrobras – Facts and data – Nine platforms that will increase the production of oil in Brazil] – Available at <http://www.petrobras.com.br/fatos-e-dados/nove-plataformas-que-vao-ampliar-a-producao-de-petroleo-no-brasil.htm> [accessed 3.2.2016]. [In Portuguese]. [28] MarineBio Conservation Society. The Ocean and Temperature - MarineBio.org – Available at <http://marinebio.org/oceans/temperature/> [accessed 6.3.2015]. [29] W. L. M. Neto (2015), Estudo do desempenho de um sistema de resfriamento de ar de alimentação de turbinas a gás para aplicação offshore utilizando água do mar [Study of the performance of a gas turbine cooling air supply system for offshore applications using sea water] (bachelor thesis). Salvador, Brazil. Federal University of Bahia. [In Portuguese]. [30] T. S. Metcalfe, P. Charbonneau, “Stellar Structure Modeling using a Parallel Genetic Algorithm for Objective Global Optimization,” doi:10.1016/S0021-9991(02)00053-0. [31] Klein. Engineering Equation Solver (EES), Academic Professional V9.901, 2015. [32] C. Kalra, G. Becquin, J. Jackson, A. L. Laursen, H. Chen, K. Myers, H. Klockow, J. Zia, “High-potential working fluids and cycle concepts for next- generation binary organic rankine cycle for enhanced geothermal systems,” In Thirty-Seventh Workshop on Geothermal Reservoir Engineering, 2012. Stanford, USA. [33] A. Schuster, S. Karellas, R. Aumann, “Efficiency optimization potential in supercritical Organic Rankine Cycles,” http://doi.org/10.1016/j.energy.2009.06.019. [34] C. R. Nelson, “Application of Refrigerant Working Fluids for Mobile Organic Rankine Cycles,” 3rd International Seminar on ORC Power Systems, Brussels, Belgium, 2015. [35] F. J. Fernández, M. M. Prieto, I. Suárez, “Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids,” Energy, 36, 5239-5249, 2011. doi:10.1016/j.energy.2011.06.028. [36] Y. Dai, J. Wang, L. Gao, “Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery,” Energy Conversion and Management, doi:10.1016/j.enconman.2008.10.018. [37] B. Saleh, G. Koglbauer, M. Wendland, J. Fischer, “Working fluids for low-temperature organic Rankine cycles,” Energy, doi.org/10.1016/j.energy.2006.07.001. [38] S. Lecompte, H. Huisseune, M. Van Den Broek, B. Vanslambrouck, M. De Paepe, “Review of organic Rankine cycle (ORC) architectures for waste heat recovery,” Renewable and Sustainable Energy Reviews, http://doi.org/10.1016/j.rser.2015.03.089. [39] Siemens AG. Industrial RB211 Gas Turbines – Available at < http://sie.ag/2tJvWjT> [accessed 26.7.2017]. [40] Bahia Gás. Gás Natural – Tabela Tarifária [Natural Gas – Tax Table] – Available at < http://www.bahiagas.com.br/gas-natural/tabela-tarifaria/> [accessed 26.7.2017]. [In Portuguese].
There are 1 citations in total.

Details

Journal Section Regular Original Research Article
Authors

C. G. F. Do Val This is me

J. A. M. Silva This is me

S. Oliveira Jr.

Publication Date November 29, 2017
Published in Issue Year 2017

Cite

APA Do Val, C. G. F., Silva, J. A. M., & Oliveira Jr., S. (2017). Deep Water Cooled ORC for Offshore Floating Oil Platform Applications. International Journal of Thermodynamics, 20(4), 229-237. https://doi.org/10.5541/eoguijt.359499
AMA Do Val CGF, Silva JAM, Oliveira Jr. S. Deep Water Cooled ORC for Offshore Floating Oil Platform Applications. International Journal of Thermodynamics. November 2017;20(4):229-237. doi:10.5541/eoguijt.359499
Chicago Do Val, C. G. F., J. A. M. Silva, and S. Oliveira Jr. “Deep Water Cooled ORC for Offshore Floating Oil Platform Applications”. International Journal of Thermodynamics 20, no. 4 (November 2017): 229-37. https://doi.org/10.5541/eoguijt.359499.
EndNote Do Val CGF, Silva JAM, Oliveira Jr. S (November 1, 2017) Deep Water Cooled ORC for Offshore Floating Oil Platform Applications. International Journal of Thermodynamics 20 4 229–237.
IEEE C. G. F. Do Val, J. A. M. Silva, and S. Oliveira Jr., “Deep Water Cooled ORC for Offshore Floating Oil Platform Applications”, International Journal of Thermodynamics, vol. 20, no. 4, pp. 229–237, 2017, doi: 10.5541/eoguijt.359499.
ISNAD Do Val, C. G. F. et al. “Deep Water Cooled ORC for Offshore Floating Oil Platform Applications”. International Journal of Thermodynamics 20/4 (November 2017), 229-237. https://doi.org/10.5541/eoguijt.359499.
JAMA Do Val CGF, Silva JAM, Oliveira Jr. S. Deep Water Cooled ORC for Offshore Floating Oil Platform Applications. International Journal of Thermodynamics. 2017;20:229–237.
MLA Do Val, C. G. F. et al. “Deep Water Cooled ORC for Offshore Floating Oil Platform Applications”. International Journal of Thermodynamics, vol. 20, no. 4, 2017, pp. 229-37, doi:10.5541/eoguijt.359499.
Vancouver Do Val CGF, Silva JAM, Oliveira Jr. S. Deep Water Cooled ORC for Offshore Floating Oil Platform Applications. International Journal of Thermodynamics. 2017;20(4):229-37.