Research Article
BibTex RIS Cite
Year 2018, , 221 - 229, 04.12.2018
https://doi.org/10.5541/ijot.452516

Abstract

References

  • [1] W.R. Dunbar, S.D. Moody, N. Lior, Exergy Analysis of an Operating Boiling-Water-Reactor Nuclear Power Station, Energy Conversion and Management, vol. 36, no. 3, pp. 149-159. DOI: 10.1016/0196-8904(94)00054- 4[2] A. Durmayaz and H. Yavuz, "Exergy Analysis of a Pressurized-Water Reaction Nuclear Power Plant," J. Appl. Energy 69 39 (2001).[3] Ferroni L., Natale A., Gatto R., Exergy Analysis of a PWR Core Heat Transfer. International Journal of Heat and Technology, vol.34, 2, pp. S465-S472, 2016. DOI: https://doi.org/10.18280/ijht.34S239 [4] V. Badescu and D. Isvoranu, "Classical Statistical Thermodynamics Approach for the Exergy of Nuclear Radiation," Europhys. Lett. 80, 30003 (2007)[5] V. Badescu, "Exergy of Nuclear Radiation - a Quantum Statistical Thermodynamics Approach," Cent. Eur. J. Phys. 7 141 (2009)[6] Hermann W.A., Quantifying Global Exergy Resources. Energy, 31, 1685-1702, 2006.[7] Gyftopoulos, E.; Beretta, G.P. Thermodynamics: Foundations and Applications, Dover Publications: New York, 2005.[8] Gyftopoulos, E.P. Entropy: An Inherent, Non-statistical Property of any System in any State. Int. J. of Thermodynamics; Vol.9, No.3, 2006, pp 107-115. [9] Beretta, G.P. Axiomatic Definition of Entropy for Nonequilibrium States. International Journal of Thermodynamics, 2008[10] Zanchini, E.; Beretta, G.P. Removing Heat and Conceptual Loops from the Definition of Entropy. International Journal of Thermodynamics, Vol.13, No. 2, 2010, pp. 67-76.[11] Beretta, G.P., Zanchini, E. A Definition of Thermodynamic Entropy Valid for Non-equilibrium States and Few-particle Systems. arXiv 2014;1411.5395.[12] Palazzo, P., Theorem of Necessity and Sufficiency of Stable Equilibrium for Generalized Potential Equality between System and Reservoir. J. Modern Physics, 2014, 5, 2003-2011.[13] Palazzo, P., A Method to Derive the Definition of Generalized Entropy from Generalized Exergy for Any State in Many-Particle Systems. Entropy, 2015, 17, 1-x manuscripts; doi:10.3390/e170x000x[14] Palazzo, P., A Generalized Statement of Highest-Entropy Principle for Stable Equilibrium and Non-Equilibrium in Many-Particle Systems. J. Modern Physics, 2016, 7, 344-357[15] Dunbar, W.R.; Lior, N.; Gaggioli, R.A. The Component Equations of Energy and Exergy. Journal of Energy Resources Technology 114, 1992[16] Gaggioli, R.A. Available Energy and Exergy. International Journal of Applied Thermodynamics, Vol.1, No.1-4, 1998, pp. 1-8. [17] Gaggioli, R.A.; Richardson, D.H.; Bowman, A.J. Available Energy – Part I: Gibbs Revisited. Journal of Energy Resources Technology, June 2002[18] Gaggioli, R.A.; Paulus, D.M. Jr. Available Energy – Part II: Gibbs Extended. Transaction of the ASME 2002; June[19] Kotas, T.J., The Exergy Method of Thermal Plant Analysis, Reprint edn; Krieger Publishing Company: 1995.[20] Glasstone S., Edlund M.C., The Elements of Nuclear Reactor Theory. D. Van Nostrand Company, Inc., Princeton, New Jersey, Fifth Printing, 1952[21] Dong Z., Pan Y., A lumped-parameter dynamical model of a nuclear heating reactor cogeneration plant. Energy Journal, Vol. 145, 15 February 2018, pp. 638-656, https://doi.org/10.1016/j.energy.2017.12.153[22] Stacey W.M., Fusion: An Introduction to the Physics and Technology of Magnetic Confinement Fusion. Second Edition, WILEY-VCH, 2010. ISBN:978-3-527-40967-9.[23] Linares J.I., Cantizano A., Moratilla B.Y., Martin-Palacios V., Batet Lluis, Supercritical CO2 Brayton Power Cycles for DEMO (demonstration power plant) Fusion Reactor Based on Dual Coolant Lithium Lead Blanket. Energy Journal, Vol. 98, 1 March 2016, pp. 271-283, https://doi.org/10.1016/j.energy.2016.01.020.

Fission and Fusion Nuclear Reactions Second Law Analyses Based on Exergy Method

Year 2018, , 221 - 229, 04.12.2018
https://doi.org/10.5541/ijot.452516

Abstract

The present
research aims at specializing Second Law analyses to characterize balances of
properties, and efficiencies of processes, occurring in nuclear reactions. The
conceptual schema is underpinned by the paradigm of microscopic few-particle
systems and the inter-particle kinetic energy and binding potential energy
determined by interactions among atomic nuclei and subatomic particles in
non-equilibrium states along irreversible processes. The definition here proposed
for thermodynamic entropy calculation is based on energy and exergy both being
measurable properties used to directly derive entropy balances along elemental
fission and fusion nuclear reactions in operating industrial plants.

References

  • [1] W.R. Dunbar, S.D. Moody, N. Lior, Exergy Analysis of an Operating Boiling-Water-Reactor Nuclear Power Station, Energy Conversion and Management, vol. 36, no. 3, pp. 149-159. DOI: 10.1016/0196-8904(94)00054- 4[2] A. Durmayaz and H. Yavuz, "Exergy Analysis of a Pressurized-Water Reaction Nuclear Power Plant," J. Appl. Energy 69 39 (2001).[3] Ferroni L., Natale A., Gatto R., Exergy Analysis of a PWR Core Heat Transfer. International Journal of Heat and Technology, vol.34, 2, pp. S465-S472, 2016. DOI: https://doi.org/10.18280/ijht.34S239 [4] V. Badescu and D. Isvoranu, "Classical Statistical Thermodynamics Approach for the Exergy of Nuclear Radiation," Europhys. Lett. 80, 30003 (2007)[5] V. Badescu, "Exergy of Nuclear Radiation - a Quantum Statistical Thermodynamics Approach," Cent. Eur. J. Phys. 7 141 (2009)[6] Hermann W.A., Quantifying Global Exergy Resources. Energy, 31, 1685-1702, 2006.[7] Gyftopoulos, E.; Beretta, G.P. Thermodynamics: Foundations and Applications, Dover Publications: New York, 2005.[8] Gyftopoulos, E.P. Entropy: An Inherent, Non-statistical Property of any System in any State. Int. J. of Thermodynamics; Vol.9, No.3, 2006, pp 107-115. [9] Beretta, G.P. Axiomatic Definition of Entropy for Nonequilibrium States. International Journal of Thermodynamics, 2008[10] Zanchini, E.; Beretta, G.P. Removing Heat and Conceptual Loops from the Definition of Entropy. International Journal of Thermodynamics, Vol.13, No. 2, 2010, pp. 67-76.[11] Beretta, G.P., Zanchini, E. A Definition of Thermodynamic Entropy Valid for Non-equilibrium States and Few-particle Systems. arXiv 2014;1411.5395.[12] Palazzo, P., Theorem of Necessity and Sufficiency of Stable Equilibrium for Generalized Potential Equality between System and Reservoir. J. Modern Physics, 2014, 5, 2003-2011.[13] Palazzo, P., A Method to Derive the Definition of Generalized Entropy from Generalized Exergy for Any State in Many-Particle Systems. Entropy, 2015, 17, 1-x manuscripts; doi:10.3390/e170x000x[14] Palazzo, P., A Generalized Statement of Highest-Entropy Principle for Stable Equilibrium and Non-Equilibrium in Many-Particle Systems. J. Modern Physics, 2016, 7, 344-357[15] Dunbar, W.R.; Lior, N.; Gaggioli, R.A. The Component Equations of Energy and Exergy. Journal of Energy Resources Technology 114, 1992[16] Gaggioli, R.A. Available Energy and Exergy. International Journal of Applied Thermodynamics, Vol.1, No.1-4, 1998, pp. 1-8. [17] Gaggioli, R.A.; Richardson, D.H.; Bowman, A.J. Available Energy – Part I: Gibbs Revisited. Journal of Energy Resources Technology, June 2002[18] Gaggioli, R.A.; Paulus, D.M. Jr. Available Energy – Part II: Gibbs Extended. Transaction of the ASME 2002; June[19] Kotas, T.J., The Exergy Method of Thermal Plant Analysis, Reprint edn; Krieger Publishing Company: 1995.[20] Glasstone S., Edlund M.C., The Elements of Nuclear Reactor Theory. D. Van Nostrand Company, Inc., Princeton, New Jersey, Fifth Printing, 1952[21] Dong Z., Pan Y., A lumped-parameter dynamical model of a nuclear heating reactor cogeneration plant. Energy Journal, Vol. 145, 15 February 2018, pp. 638-656, https://doi.org/10.1016/j.energy.2017.12.153[22] Stacey W.M., Fusion: An Introduction to the Physics and Technology of Magnetic Confinement Fusion. Second Edition, WILEY-VCH, 2010. ISBN:978-3-527-40967-9.[23] Linares J.I., Cantizano A., Moratilla B.Y., Martin-Palacios V., Batet Lluis, Supercritical CO2 Brayton Power Cycles for DEMO (demonstration power plant) Fusion Reactor Based on Dual Coolant Lithium Lead Blanket. Energy Journal, Vol. 98, 1 March 2016, pp. 271-283, https://doi.org/10.1016/j.energy.2016.01.020.
There are 1 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Pierfrancesco Palazzo 0000-0002-5852-0530

Publication Date December 4, 2018
Published in Issue Year 2018

Cite

APA Palazzo, P. (2018). Fission and Fusion Nuclear Reactions Second Law Analyses Based on Exergy Method. International Journal of Thermodynamics, 21(4), 221-229. https://doi.org/10.5541/ijot.452516
AMA Palazzo P. Fission and Fusion Nuclear Reactions Second Law Analyses Based on Exergy Method. International Journal of Thermodynamics. December 2018;21(4):221-229. doi:10.5541/ijot.452516
Chicago Palazzo, Pierfrancesco. “Fission and Fusion Nuclear Reactions Second Law Analyses Based on Exergy Method”. International Journal of Thermodynamics 21, no. 4 (December 2018): 221-29. https://doi.org/10.5541/ijot.452516.
EndNote Palazzo P (December 1, 2018) Fission and Fusion Nuclear Reactions Second Law Analyses Based on Exergy Method. International Journal of Thermodynamics 21 4 221–229.
IEEE P. Palazzo, “Fission and Fusion Nuclear Reactions Second Law Analyses Based on Exergy Method”, International Journal of Thermodynamics, vol. 21, no. 4, pp. 221–229, 2018, doi: 10.5541/ijot.452516.
ISNAD Palazzo, Pierfrancesco. “Fission and Fusion Nuclear Reactions Second Law Analyses Based on Exergy Method”. International Journal of Thermodynamics 21/4 (December 2018), 221-229. https://doi.org/10.5541/ijot.452516.
JAMA Palazzo P. Fission and Fusion Nuclear Reactions Second Law Analyses Based on Exergy Method. International Journal of Thermodynamics. 2018;21:221–229.
MLA Palazzo, Pierfrancesco. “Fission and Fusion Nuclear Reactions Second Law Analyses Based on Exergy Method”. International Journal of Thermodynamics, vol. 21, no. 4, 2018, pp. 221-9, doi:10.5541/ijot.452516.
Vancouver Palazzo P. Fission and Fusion Nuclear Reactions Second Law Analyses Based on Exergy Method. International Journal of Thermodynamics. 2018;21(4):221-9.