Research Article
BibTex RIS Cite

Study of three valves command laws of the expansion cylinder of a hot air engine

Year 2019, , 84 - 96, 23.05.2019
https://doi.org/10.5541/ijot.499621

Abstract

The family of hot
air engines
with external heat
input

is divided in two subgroups: the Stirling engines, invented in 1816, have no
valves whereas Ericsson engines, invented in 1833, have valves in order to
isolate the cylinders.
The
valves give some advantages to the Ericsson engine. Amongst them, the most important
one is that the heat exchangers are not to be considered as unswept dead
volumes whereas the Stirling engine designer is faced to the difficult
compromise between heat exchanger transfer area maximization and heat exchanger
volume minimization.



However, the distribution system of the
Ericsson engine introduces some complexity and a
non-negligible mechanical
energy consumption in order to actuate them
.



An original and very simple system called
"bash-valve" is proposed to provide answers to the difficulties
related to the distribution system of the Ericsson engine. The
"bash-valve" technology has been used in steam piston engines and
pneumatic piston engines. In this system, the piston itself actuates the
opening of the valves when being around the top dead center. When its moves to
the bottom dead center, the piston loses contact with the valves and it closes
under the effect of the return spring. Three different valves command laws of
the expansion cylinder of the proposed hot air engine are studied. A comparison
between energy performance of the engine with the expansion cylinder equipped
with two kinds of bash valve technology and the energy performance of the
expansion cylinder of
an incomplete expansion Joule Ericsson cycle engine is presented as well as their influence on
the design of the system.

References

  • [1] International Energy Agency, 2014 Annual Report, https://www.iea.org/publications/.../2014_IEA_AnnualReport.pdf
  • [2] Finkelstein Th, Organ AJ. Air engines. London: Professional Engineering Publishing Ltd; 2001.
  • [3] Stouffs P. Hot Air Engines. Journal of Applied Fluid Mechanics 2011;4:1–8.
  • [4] Creyx M, Delacourt E, Morin C, Desmet B, Peultier P. Energetic optimization of the performances of a hot air engine for micro-CHP systems working with a Joule or an Ericsson cycle. Energy 2013;49:229–239.
  • [5] Bonnet S, Alaphilippe M, Stouffs P. Energy, exergy and cost analysis of a micro-cogeneration system based on an Ericsson engine. Int J Therm Sci 2005; 44/12:1161–8.
  • [6] Touré A. Etude théorique et expérimentale d’un moteur Ericsson destiné à la microcogénération. PhD thesis, Pau: UPPA; 2010.
  • [7] Alaphilippe M., Bonnet S., Stouffs P., Low power thermodynamic solar energy conversion: coupling of a parabolic trough concentrator and an Ericsson engine, Int. J. of Thermodynamics, N° 10, p. 37-45, 2007.
  • [8] Le Roux WG, Bello-Ochende T, Meyer JP. A review on the thermodynamicmodynamic optimisation and modeling of the solar thermal Brayton cycle. Renewable and sustainable energy reviews 2013;28:677–690.
  • [9] Touré A., Stouffs P., Modeling of the Ericsson engine, Energy, Volume 76, 1 November 2014, p. 445-452.
  • [10] Moss RW, Roskilly AP, Nanda SK. Reciprocating Joule-cycle engine for domestic CHP systems. Applied Energy 2005;80:169–185.
  • [11] Wojewoda J, Kazimierski Z. Numerical model and investigations of the externally heated valve Joule engine. Energy 2010;35:2099–2108.
  • [12] Kussul E, Makeyev O, Baidyk T, Olvera O. Design of Ericsson Heat Engine with Micro Channel Recuperator. ISRN Renewable Energy 2012: ID 613642, 8 p.
  • [13] Bell MA, Partridge T. Thermodynamic design of a reciprocating Joule cycle engine. Proc Instn Mech Engrs Part A J Power & Energy 2003;217:239–246.
  • [14] Ibsaine R, Sène Ph, Stouffs P. Moteurs Volumétriques Alternatifs à Apport de Chaleur Externe : Comparaison entre les Machines à Cycle de Joule et les Machines à Cycle de Rankine. Actes du Colloque COFRET. Sofia: Université technique; 2012.
  • [15] Ibsaine R, Stouffs P. Modeling of a humid air reciprocating regenerative Joule cycle Ericsson engine. 15th International Stirling Engine Conference (ISEC). Roma: Int. Stirling Engine Committee; 2012.
  • [16] Lontsi F, Hamandjoda O, Fozao K, Stouffs P, Nganhou J. Dynamic simulation of a small modified Joule cycle reciprocating Ericsson engine for microcogeneration systems. Energy2013;63: 309–316.
  • [17] Creyx M, Delacourt E, Morin C, Desmet B, Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach, Energy 102 (2016) 31-43.
  • [18] Creyx M, Delacourt E, Morin C, Lalot S, Desmet B, Energetic and Exergetic Analysis of a Heat Exchanger Integrated in a Solid Biomass-Fuelled Micro-CHP System with an Ericsson Engine, Entropy 2016, 18, 154. [19] Fula Rojas A, Sierra Vargas F, Stouffs P. Étude paramétrique globale de l'influence des transferts thermiques au travers des parois des cylindres d'un moteur Ericsson. Actes du Colloque CIFEM ART-10-52, Ouagadougou: 2ie, 2012.
  • [20] Fula A, Stouffs P, Sierra F. In-Cylinder Heat Transfer in an Ericsson Engine Prototype. Renewable Energy and Power Quality Journal 2013;11:594.
  • [21] Bash valve, https://en.wikipedia.org/wiki/Bash_valve , [Accessed: 28-Sept-2018].
  • [22] Harold V.Sturtevant, Steam engine inlet valve mechanism,Unites States Patent Office 3.397.619, patented August 20, 1968.
  • [23] Stumpf, The una-flow steam-engine, 1922. [Online]. https://archive.org/stream/cu31924015551702#page/n3/mode/1up. [Accessed: 28-Sept-2018].
  • [24] Marcin Jakubowski, The Modern steam engine, OSE project.https://sites.google.com/site/phase3project/projects/steam-engine/engine-designs/ose-arrow-head-engine. [Accessed: 28-Sept-2018].
  • [25] Bannister, P., The ANU Solar Thermal Steam Engine: Performance Analysis. International Journal of Energy Research, Volume 22, 1998, pp. 303-316.
  • [26] Bradley Da Silva, The development, construction and testing of a piston expander for small-scale solar thermal power plants, Master of thesis in Engineering, Stellenbosch University, March 2018.
Year 2019, , 84 - 96, 23.05.2019
https://doi.org/10.5541/ijot.499621

Abstract

References

  • [1] International Energy Agency, 2014 Annual Report, https://www.iea.org/publications/.../2014_IEA_AnnualReport.pdf
  • [2] Finkelstein Th, Organ AJ. Air engines. London: Professional Engineering Publishing Ltd; 2001.
  • [3] Stouffs P. Hot Air Engines. Journal of Applied Fluid Mechanics 2011;4:1–8.
  • [4] Creyx M, Delacourt E, Morin C, Desmet B, Peultier P. Energetic optimization of the performances of a hot air engine for micro-CHP systems working with a Joule or an Ericsson cycle. Energy 2013;49:229–239.
  • [5] Bonnet S, Alaphilippe M, Stouffs P. Energy, exergy and cost analysis of a micro-cogeneration system based on an Ericsson engine. Int J Therm Sci 2005; 44/12:1161–8.
  • [6] Touré A. Etude théorique et expérimentale d’un moteur Ericsson destiné à la microcogénération. PhD thesis, Pau: UPPA; 2010.
  • [7] Alaphilippe M., Bonnet S., Stouffs P., Low power thermodynamic solar energy conversion: coupling of a parabolic trough concentrator and an Ericsson engine, Int. J. of Thermodynamics, N° 10, p. 37-45, 2007.
  • [8] Le Roux WG, Bello-Ochende T, Meyer JP. A review on the thermodynamicmodynamic optimisation and modeling of the solar thermal Brayton cycle. Renewable and sustainable energy reviews 2013;28:677–690.
  • [9] Touré A., Stouffs P., Modeling of the Ericsson engine, Energy, Volume 76, 1 November 2014, p. 445-452.
  • [10] Moss RW, Roskilly AP, Nanda SK. Reciprocating Joule-cycle engine for domestic CHP systems. Applied Energy 2005;80:169–185.
  • [11] Wojewoda J, Kazimierski Z. Numerical model and investigations of the externally heated valve Joule engine. Energy 2010;35:2099–2108.
  • [12] Kussul E, Makeyev O, Baidyk T, Olvera O. Design of Ericsson Heat Engine with Micro Channel Recuperator. ISRN Renewable Energy 2012: ID 613642, 8 p.
  • [13] Bell MA, Partridge T. Thermodynamic design of a reciprocating Joule cycle engine. Proc Instn Mech Engrs Part A J Power & Energy 2003;217:239–246.
  • [14] Ibsaine R, Sène Ph, Stouffs P. Moteurs Volumétriques Alternatifs à Apport de Chaleur Externe : Comparaison entre les Machines à Cycle de Joule et les Machines à Cycle de Rankine. Actes du Colloque COFRET. Sofia: Université technique; 2012.
  • [15] Ibsaine R, Stouffs P. Modeling of a humid air reciprocating regenerative Joule cycle Ericsson engine. 15th International Stirling Engine Conference (ISEC). Roma: Int. Stirling Engine Committee; 2012.
  • [16] Lontsi F, Hamandjoda O, Fozao K, Stouffs P, Nganhou J. Dynamic simulation of a small modified Joule cycle reciprocating Ericsson engine for microcogeneration systems. Energy2013;63: 309–316.
  • [17] Creyx M, Delacourt E, Morin C, Desmet B, Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach, Energy 102 (2016) 31-43.
  • [18] Creyx M, Delacourt E, Morin C, Lalot S, Desmet B, Energetic and Exergetic Analysis of a Heat Exchanger Integrated in a Solid Biomass-Fuelled Micro-CHP System with an Ericsson Engine, Entropy 2016, 18, 154. [19] Fula Rojas A, Sierra Vargas F, Stouffs P. Étude paramétrique globale de l'influence des transferts thermiques au travers des parois des cylindres d'un moteur Ericsson. Actes du Colloque CIFEM ART-10-52, Ouagadougou: 2ie, 2012.
  • [20] Fula A, Stouffs P, Sierra F. In-Cylinder Heat Transfer in an Ericsson Engine Prototype. Renewable Energy and Power Quality Journal 2013;11:594.
  • [21] Bash valve, https://en.wikipedia.org/wiki/Bash_valve , [Accessed: 28-Sept-2018].
  • [22] Harold V.Sturtevant, Steam engine inlet valve mechanism,Unites States Patent Office 3.397.619, patented August 20, 1968.
  • [23] Stumpf, The una-flow steam-engine, 1922. [Online]. https://archive.org/stream/cu31924015551702#page/n3/mode/1up. [Accessed: 28-Sept-2018].
  • [24] Marcin Jakubowski, The Modern steam engine, OSE project.https://sites.google.com/site/phase3project/projects/steam-engine/engine-designs/ose-arrow-head-engine. [Accessed: 28-Sept-2018].
  • [25] Bannister, P., The ANU Solar Thermal Steam Engine: Performance Analysis. International Journal of Energy Research, Volume 22, 1998, pp. 303-316.
  • [26] Bradley Da Silva, The development, construction and testing of a piston expander for small-scale solar thermal power plants, Master of thesis in Engineering, Stellenbosch University, March 2018.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Regular Original Research Article
Authors

Pascal Stouffs

Max Ndamé Ngangué This is me 0000-0003-3920-0205

Olivier Sosso Mayi This is me

Publication Date May 23, 2019
Published in Issue Year 2019

Cite

APA Stouffs, P., Ndamé Ngangué, M., & Sosso Mayi, O. (2019). Study of three valves command laws of the expansion cylinder of a hot air engine. International Journal of Thermodynamics, 22(2), 84-96. https://doi.org/10.5541/ijot.499621
AMA Stouffs P, Ndamé Ngangué M, Sosso Mayi O. Study of three valves command laws of the expansion cylinder of a hot air engine. International Journal of Thermodynamics. May 2019;22(2):84-96. doi:10.5541/ijot.499621
Chicago Stouffs, Pascal, Max Ndamé Ngangué, and Olivier Sosso Mayi. “Study of Three Valves Command Laws of the Expansion Cylinder of a Hot Air Engine”. International Journal of Thermodynamics 22, no. 2 (May 2019): 84-96. https://doi.org/10.5541/ijot.499621.
EndNote Stouffs P, Ndamé Ngangué M, Sosso Mayi O (May 1, 2019) Study of three valves command laws of the expansion cylinder of a hot air engine. International Journal of Thermodynamics 22 2 84–96.
IEEE P. Stouffs, M. Ndamé Ngangué, and O. Sosso Mayi, “Study of three valves command laws of the expansion cylinder of a hot air engine”, International Journal of Thermodynamics, vol. 22, no. 2, pp. 84–96, 2019, doi: 10.5541/ijot.499621.
ISNAD Stouffs, Pascal et al. “Study of Three Valves Command Laws of the Expansion Cylinder of a Hot Air Engine”. International Journal of Thermodynamics 22/2 (May 2019), 84-96. https://doi.org/10.5541/ijot.499621.
JAMA Stouffs P, Ndamé Ngangué M, Sosso Mayi O. Study of three valves command laws of the expansion cylinder of a hot air engine. International Journal of Thermodynamics. 2019;22:84–96.
MLA Stouffs, Pascal et al. “Study of Three Valves Command Laws of the Expansion Cylinder of a Hot Air Engine”. International Journal of Thermodynamics, vol. 22, no. 2, 2019, pp. 84-96, doi:10.5541/ijot.499621.
Vancouver Stouffs P, Ndamé Ngangué M, Sosso Mayi O. Study of three valves command laws of the expansion cylinder of a hot air engine. International Journal of Thermodynamics. 2019;22(2):84-96.