Research Article
BibTex RIS Cite
Year 2020, , 34 - 41, 29.02.2020
https://doi.org/10.5541/ijot.647800

Abstract

References

  • The Chemical Abstracts Service Chemical Registry System [database on the Internet]2019. Available from: https://www.acs.org/content/acs/en.html.
  • Babalola FU, Susu AA. Model development of a suitable equation of state for multicomponent multiphase systems: application to crude oil phase stability requirements. Int. J. Thermodyn. 2018;21(2):111-8.
  • Brus G, Komatsu Y, Kimijima S, Szmyd J. An analysis of biogas reforming process on Ni/YSZ and Ni/SDC catalysts. Int. J. Thermodyn. 2012;15(1):43-51.
  • Declaye S, Dumas X, Ferrand L, Lemort V. Waste heat recovery by means of Organic Rankine Cycle (ORC) system coupled with two-phase closed thermosyphons. Int. J. Thermodyn. 2017;20(2):81-9.
  • Manfrida G, Secchi R. Performance prediction of a small-size adiabatic compressed air energy storage system. Int. J. Thermodyn. 2015;18(2):111-9.
  • Yasmin M, Gupta M. Thermodynamical Study of Alcoholic Solutions of Poly (ethylene glycol) Diacrylate and Poly (ethylene glycol) Dimethacrylate. Int. J. Thermodyn. 2012;15(2):111-7.
  • Mousavi SM. Numerical study of entropy generation in the flameless oxidation using large eddy simulation model and OpenFOAM software. Int. J. Thermodyn. 2014;17(4):202-8.
  • Abolpour B, Shamsoddini R. A novel scheme for predicting the behaviors of liquid and vapor phases of water using the ideal gas theory. Int. J. Thermodyn. 2018;21(3):174-8.
  • Atakan B. Gas turbines for polygeneration? A thermodynamic investigation of a fuel rich gas turbine cycle. Int. J. Thermodyn. 2011;14(4):185-92.
  • Oyedepo S, Kilanko O. Thermodynamic analysis of a gas turbine power plant modelled with an evaporative cooler. Int. J. Thermodyn. 2014;17(1):14-20.
  • Lazzaretto A, Manente G. A new criterion to optimize ORC design performance using efficiency correlations for axial and radial turbines. Int. J. Thermodyn. 2014;17(3):192-200.
  • Qun Z, Hai Z, Lanxin S. Effects of water droplets on the numerical simulation of a complete gas turbine. Int. J. Thermodyn. 2018;21(1):7-14.
  • Mathieu D, Simonetti P. Evaluation of solid-state formation enthalpies for energetic materials and related compounds. Thermochimica acta. 2002;384(1-2):369-75.
  • Rice BM, Pai SV, Hare J. Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust. Flame. 1999;118(3):445-58.
  • Kim CK, Lee KA, Hyun KH, et al. Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials. J. Comput. Chem. 2004;25(16):2073-9.
  • Politzer P, Murray JS, Edward Grice M, Desalvo M, Miller E. Calculation of heats of sublimation and solid phase heats of formation. Molecular Physics. 1997;91(5):923-8.
  • Keshavarz MH, Zamani M, Atabaki F, Monjezi KH. Reliable approach for prediction of heats of formation of polycyclic saturated hydrocarbons using recently developed density functionals. Comput. Theor. Chem. 2013;1011:30-6.
  • [18] Keshavarz MH. Simple procedure for determining heats of detonation. Thermochimica acta. 2005;428(1-2):95-9.
  • Keshavarz MH. Prediction of the condensed phase heat of formation of energetic compounds. Journal of hazardous materials. 2011;190(1-3):330-44.
  • Albahri TA, Aljasmi AF. SGC method for predicting the standard enthalpy of formation of pure compounds from their molecular structures. Thermochimica acta. 2013;568:46-60.
  • Salmon A, Dalmazzone D. Prediction of Enthalpy of Formation in the Solid State (at 298.15 K) Using Second-Order Group Contributions—Part 2: Carbon-Hydrogen, Carbon-Hydrogen-Oxygen, and Carbon-Hydrogen-Nitrogen-Oxygen Compounds. Journal of physical and chemical reference data. 2007;36(1):19-58.
  • Salmon A, Dalmazzone D. Prediction of enthalpy of formation in the solid state (at 298.15 k) using second-order group contributions. Part 1. Carbon-hydrogen and carbon-hydrogen-oxygen compounds. Journal of physical and chemical reference data. 2006;35(3):1443-57.
  • Cohen N. Revised group additivity values for enthalpies of formation (at 298 K) of carbon–hydrogen and carbon–hydrogen–oxygen compounds. Journal of Physical and Chemical Reference Data. 1996;25(6):1411-81.
  • Domalski ES, Hearing ED. Estimation of the thermodynamic properties of C‐H‐N‐O‐S‐halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data. 1993;22(4):805-1159.
  • Hukkerikar AS, Meier RJ, Sin G, Gani R. A method to estimate the enthalpy of formation of organic compounds with chemical accuracy. Fluid Ph. Equilibria. 2013;348:23-32.
  • Wang K, Brewster M. Thermodynamic Behavior of Water from Soft-Cell Theory. Int. J. Thermodyn. 2011;14(1):1-9.
  • Singh M. Thermodynamics of Philicphobic Interaction Shift in Aqueous Tweens 20 to 80. Int. J. Thermodyn. 2011;14(3):135-46.
  • Ghaieni HR, Tavangar S, Ebrahimzadeh Qhomi MM. Simple correlations for calculating NHTPB enthalpy of formation through molecular structures. Multidiscipline Modeling in Materials and Structures. 2019;15(1):258-64.
  • Hukkerikar AS, Sarup B, Ten Kate A, Abildskov J, Sin G, Gani R. Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis. Fluid Ph. Equilibria. 2012;321:25-43.
  • Gharagheizi F. Prediction of the standard enthalpy of formation of pure compounds using molecular structure. AUST J CHEM. 2009;62(4):376-81.
  • Zhang Y. An improved QSPR study of standard formation enthalpies of acyclic alkanes based on artificial neural networks and genetic algorithm. Chemom. Intell. Lab. Syst. 2009;98(2):162-72.
  • Marrero J, Gani R. Group-contribution based estimation of pure component properties. Fluid Ph. Equilibria. 2001;183:183-208.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09. Wallingford, CT2016.
  • NIST Chemistry WebBook, NIST Standard Ref-erence Database Number 69, National Institute of Standards and Technology,Gaithersburg, MD, 2005 http://webbook.nist.gov (retrieved 25.04.13). [database on the Internet]2019.
  • Mielczarek DC, Nait Saidi C, Paricaud P, Catoire L. Generalized Prediction of Enthalpies of Formation Using DLPNO‐CCSD (T) Ab Initio Calculations for Molecules Containing the Elements H, C, N, O, F, S, Cl, Br. J. Comput. Chem. 2019;40(6):768-93.
  • Pimenova S, Lukyanova V, Ilin DY, Druzhinina A, Dorofeeva O. Standard enthalpies of formation of dicyclopropyldinitromethane and tricyclopropylmethane. The Journal of Chemical Thermodynamics. 2019;132:316-21.
  • Guella S, Argoub K, Benkouider AM, Yahiaoui A, Kessas R, Bagui F. Artificial Neural Network-Group Contribution Method for Predicting Standard Enthalpy of Formation in the Solid State: C–H, C–H–O, C–H–N, and C–H–N–O Compounds. Int. J. Thermophys. 2015;36(10-11):2820-32.
  • Argoub K, Benkouider AM, Yahiaoui A, Kessas R, Guella S, Bagui F. Prediction of standard enthalpy of formation in the solid state by a third-order group contribution method. Fluid Ph. Equilibria. 2014;380:121-7.
  • Phifer JR, Cox CE, da Silva LF, et al. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations. Molecular Physics. 2017;115(9-12):1286-300.
  • Ackermann T. SW Benson: Thermochemical Kinetics. Methods for the Estimation of Thermochemical Data and Rate Parameters. John Wiley & Sons, Inc., New York, 1968. XII und 223 Seiten, 4 Abbildungen. Preis: 94 s. Zeitschrift für Physikalische Chemie. 1969;73(2):241-.

Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method.

Year 2020, , 34 - 41, 29.02.2020
https://doi.org/10.5541/ijot.647800

Abstract

Recently,
with the development of calculators and numerical tools, quantum computations
to explore the electronic, structural and dynamic properties of matter without
resorting to experimental knowledge have seen increasing development. Thus, it
is possible to perform ab-initio calculations with increasing precision and for
increasingly larger systems. In the scientific literature, papers using
ab-initio quantum computation for the prediction of formation enthalpies is
more and more numerous. The aim of this paper is to develop a theoretical
method to calculate standard enthalpy of formation in gas stat for organic
compounds using group contribution technics (third-order group contribution
method). For the establishment of this method, 750 molecules are used. In
parallel with group contribution methods, this paper presents another approach
to calculate gas-state formation enthalpies based on DFT method. The
calculation involved 30 molecules with at least one ring from C3 to C13.
Finally, DFT and group contribution results are compared.

References

  • The Chemical Abstracts Service Chemical Registry System [database on the Internet]2019. Available from: https://www.acs.org/content/acs/en.html.
  • Babalola FU, Susu AA. Model development of a suitable equation of state for multicomponent multiphase systems: application to crude oil phase stability requirements. Int. J. Thermodyn. 2018;21(2):111-8.
  • Brus G, Komatsu Y, Kimijima S, Szmyd J. An analysis of biogas reforming process on Ni/YSZ and Ni/SDC catalysts. Int. J. Thermodyn. 2012;15(1):43-51.
  • Declaye S, Dumas X, Ferrand L, Lemort V. Waste heat recovery by means of Organic Rankine Cycle (ORC) system coupled with two-phase closed thermosyphons. Int. J. Thermodyn. 2017;20(2):81-9.
  • Manfrida G, Secchi R. Performance prediction of a small-size adiabatic compressed air energy storage system. Int. J. Thermodyn. 2015;18(2):111-9.
  • Yasmin M, Gupta M. Thermodynamical Study of Alcoholic Solutions of Poly (ethylene glycol) Diacrylate and Poly (ethylene glycol) Dimethacrylate. Int. J. Thermodyn. 2012;15(2):111-7.
  • Mousavi SM. Numerical study of entropy generation in the flameless oxidation using large eddy simulation model and OpenFOAM software. Int. J. Thermodyn. 2014;17(4):202-8.
  • Abolpour B, Shamsoddini R. A novel scheme for predicting the behaviors of liquid and vapor phases of water using the ideal gas theory. Int. J. Thermodyn. 2018;21(3):174-8.
  • Atakan B. Gas turbines for polygeneration? A thermodynamic investigation of a fuel rich gas turbine cycle. Int. J. Thermodyn. 2011;14(4):185-92.
  • Oyedepo S, Kilanko O. Thermodynamic analysis of a gas turbine power plant modelled with an evaporative cooler. Int. J. Thermodyn. 2014;17(1):14-20.
  • Lazzaretto A, Manente G. A new criterion to optimize ORC design performance using efficiency correlations for axial and radial turbines. Int. J. Thermodyn. 2014;17(3):192-200.
  • Qun Z, Hai Z, Lanxin S. Effects of water droplets on the numerical simulation of a complete gas turbine. Int. J. Thermodyn. 2018;21(1):7-14.
  • Mathieu D, Simonetti P. Evaluation of solid-state formation enthalpies for energetic materials and related compounds. Thermochimica acta. 2002;384(1-2):369-75.
  • Rice BM, Pai SV, Hare J. Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust. Flame. 1999;118(3):445-58.
  • Kim CK, Lee KA, Hyun KH, et al. Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials. J. Comput. Chem. 2004;25(16):2073-9.
  • Politzer P, Murray JS, Edward Grice M, Desalvo M, Miller E. Calculation of heats of sublimation and solid phase heats of formation. Molecular Physics. 1997;91(5):923-8.
  • Keshavarz MH, Zamani M, Atabaki F, Monjezi KH. Reliable approach for prediction of heats of formation of polycyclic saturated hydrocarbons using recently developed density functionals. Comput. Theor. Chem. 2013;1011:30-6.
  • [18] Keshavarz MH. Simple procedure for determining heats of detonation. Thermochimica acta. 2005;428(1-2):95-9.
  • Keshavarz MH. Prediction of the condensed phase heat of formation of energetic compounds. Journal of hazardous materials. 2011;190(1-3):330-44.
  • Albahri TA, Aljasmi AF. SGC method for predicting the standard enthalpy of formation of pure compounds from their molecular structures. Thermochimica acta. 2013;568:46-60.
  • Salmon A, Dalmazzone D. Prediction of Enthalpy of Formation in the Solid State (at 298.15 K) Using Second-Order Group Contributions—Part 2: Carbon-Hydrogen, Carbon-Hydrogen-Oxygen, and Carbon-Hydrogen-Nitrogen-Oxygen Compounds. Journal of physical and chemical reference data. 2007;36(1):19-58.
  • Salmon A, Dalmazzone D. Prediction of enthalpy of formation in the solid state (at 298.15 k) using second-order group contributions. Part 1. Carbon-hydrogen and carbon-hydrogen-oxygen compounds. Journal of physical and chemical reference data. 2006;35(3):1443-57.
  • Cohen N. Revised group additivity values for enthalpies of formation (at 298 K) of carbon–hydrogen and carbon–hydrogen–oxygen compounds. Journal of Physical and Chemical Reference Data. 1996;25(6):1411-81.
  • Domalski ES, Hearing ED. Estimation of the thermodynamic properties of C‐H‐N‐O‐S‐halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data. 1993;22(4):805-1159.
  • Hukkerikar AS, Meier RJ, Sin G, Gani R. A method to estimate the enthalpy of formation of organic compounds with chemical accuracy. Fluid Ph. Equilibria. 2013;348:23-32.
  • Wang K, Brewster M. Thermodynamic Behavior of Water from Soft-Cell Theory. Int. J. Thermodyn. 2011;14(1):1-9.
  • Singh M. Thermodynamics of Philicphobic Interaction Shift in Aqueous Tweens 20 to 80. Int. J. Thermodyn. 2011;14(3):135-46.
  • Ghaieni HR, Tavangar S, Ebrahimzadeh Qhomi MM. Simple correlations for calculating NHTPB enthalpy of formation through molecular structures. Multidiscipline Modeling in Materials and Structures. 2019;15(1):258-64.
  • Hukkerikar AS, Sarup B, Ten Kate A, Abildskov J, Sin G, Gani R. Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis. Fluid Ph. Equilibria. 2012;321:25-43.
  • Gharagheizi F. Prediction of the standard enthalpy of formation of pure compounds using molecular structure. AUST J CHEM. 2009;62(4):376-81.
  • Zhang Y. An improved QSPR study of standard formation enthalpies of acyclic alkanes based on artificial neural networks and genetic algorithm. Chemom. Intell. Lab. Syst. 2009;98(2):162-72.
  • Marrero J, Gani R. Group-contribution based estimation of pure component properties. Fluid Ph. Equilibria. 2001;183:183-208.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09. Wallingford, CT2016.
  • NIST Chemistry WebBook, NIST Standard Ref-erence Database Number 69, National Institute of Standards and Technology,Gaithersburg, MD, 2005 http://webbook.nist.gov (retrieved 25.04.13). [database on the Internet]2019.
  • Mielczarek DC, Nait Saidi C, Paricaud P, Catoire L. Generalized Prediction of Enthalpies of Formation Using DLPNO‐CCSD (T) Ab Initio Calculations for Molecules Containing the Elements H, C, N, O, F, S, Cl, Br. J. Comput. Chem. 2019;40(6):768-93.
  • Pimenova S, Lukyanova V, Ilin DY, Druzhinina A, Dorofeeva O. Standard enthalpies of formation of dicyclopropyldinitromethane and tricyclopropylmethane. The Journal of Chemical Thermodynamics. 2019;132:316-21.
  • Guella S, Argoub K, Benkouider AM, Yahiaoui A, Kessas R, Bagui F. Artificial Neural Network-Group Contribution Method for Predicting Standard Enthalpy of Formation in the Solid State: C–H, C–H–O, C–H–N, and C–H–N–O Compounds. Int. J. Thermophys. 2015;36(10-11):2820-32.
  • Argoub K, Benkouider AM, Yahiaoui A, Kessas R, Guella S, Bagui F. Prediction of standard enthalpy of formation in the solid state by a third-order group contribution method. Fluid Ph. Equilibria. 2014;380:121-7.
  • Phifer JR, Cox CE, da Silva LF, et al. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations. Molecular Physics. 2017;115(9-12):1286-300.
  • Ackermann T. SW Benson: Thermochemical Kinetics. Methods for the Estimation of Thermochemical Data and Rate Parameters. John Wiley & Sons, Inc., New York, 1968. XII und 223 Seiten, 4 Abbildungen. Preis: 94 s. Zeitschrift für Physikalische Chemie. 1969;73(2):241-.
There are 40 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Argoub Kadda

Benkouider Ali Mustapha This is me

Yahiaoui Ahmed This is me

Toubal Khaled This is me

Djebar Hadji This is me

Publication Date February 29, 2020
Published in Issue Year 2020

Cite

APA Kadda, A., Ali Mustapha, B., Ahmed, Y., Khaled, T., et al. (2020). Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method. International Journal of Thermodynamics, 23(1), 34-41. https://doi.org/10.5541/ijot.647800
AMA Kadda A, Ali Mustapha B, Ahmed Y, Khaled T, Hadji D. Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method. International Journal of Thermodynamics. February 2020;23(1):34-41. doi:10.5541/ijot.647800
Chicago Kadda, Argoub, Benkouider Ali Mustapha, Yahiaoui Ahmed, Toubal Khaled, and Djebar Hadji. “Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method”. International Journal of Thermodynamics 23, no. 1 (February 2020): 34-41. https://doi.org/10.5541/ijot.647800.
EndNote Kadda A, Ali Mustapha B, Ahmed Y, Khaled T, Hadji D (February 1, 2020) Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method. International Journal of Thermodynamics 23 1 34–41.
IEEE A. Kadda, B. Ali Mustapha, Y. Ahmed, T. Khaled, and D. Hadji, “Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method”., International Journal of Thermodynamics, vol. 23, no. 1, pp. 34–41, 2020, doi: 10.5541/ijot.647800.
ISNAD Kadda, Argoub et al. “Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method”. International Journal of Thermodynamics 23/1 (February 2020), 34-41. https://doi.org/10.5541/ijot.647800.
JAMA Kadda A, Ali Mustapha B, Ahmed Y, Khaled T, Hadji D. Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method. International Journal of Thermodynamics. 2020;23:34–41.
MLA Kadda, Argoub et al. “Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method”. International Journal of Thermodynamics, vol. 23, no. 1, 2020, pp. 34-41, doi:10.5541/ijot.647800.
Vancouver Kadda A, Ali Mustapha B, Ahmed Y, Khaled T, Hadji D. Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method. International Journal of Thermodynamics. 2020;23(1):34-41.