BibTex RIS Cite

Comparative Study between Cubic and non-Cubic Equations of State Using Carnahan-Starling Repulsive Term: Application of Temperature-Dependent Alpha and Beta Functions

Year 2014, , 21 - 26, 01.02.2014
https://doi.org/10.5541/ijot.77015

Abstract

Studies on phase equilibria data behavior of pure substances are motivation to the researchers due to importance of these data for the scientific and industrial applications. Several EOS were proposed and its modifications have been made, whose aim is to improve the correlation between experimental and calculated thermophysical properties. This work proposes a comparative study between the PVT calculated data using cubic and non-cubic equations of state, in which its original repulsive term is substituted by the Carnahan-Starling hard-sphere repulsive term; furthermore, generalized expression to calculate (Tr,) and (Tr,) functions are used. Experimental data of vapor pressure for various pure compounds were compared to the calculated vapor pressure data showing satisfactory agreement, when this proposed modification is employed.

References

  • M. M. Abbot, Thirteen Ways of Looking at the van der Waals Equation. Chem. Eng. Progress, 2, 25-37, 1989.
  • G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci., 27, 1197-1203, 1972.
  • D-Y. Peng, D. B. Robinson, A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam., 15, 59-64, 19 Y. S. Wei, R. J. Sadus, Equations of State for the Calculation of Fluid Phase Equilibria. AIChE J, 46, 169196, 2000.
  • K. Nasrifar, M. Moshfeghian, A new cubic equation of state for simple fluids: pure and mixture. Fluid Phase Equilibria, 190, 73-88 (2001).
  • C. H. Twu, J. E. Coon, J. R. Cunninghan, A new generalized alpha function for a cubic equation of state Part Peng-Robinson equation. Fluid Phase Equilibria, 105, 49-59, 1995.
  • M-R. Riazi, G. A. Mansoori, Simple equation of state accurately predicts hydrocarbon densities. Oil and Gas Journal, 12, 108-111, 1993.
  • S. Hajipour, M. Edalat, A new hard sphere cubic equation of state for predicting fluids’ properties and vapor-liquid phase equilibrium calculations. Journal of Phase Equilibria and Difusion, 29, 322-332, 2008.
  • R. F. Checoni, S. P. Ravagnani, (2013). Studies about Equation of State for Pure Associated Fluids: Temperature Dependent Co-Volume Accounting a Physically Consistent Repulsive Term, Int. J. Thermo., 16, 20-27, 2013.
  • H. Toghiani, D. S. Viswanath, A Cubic Equation of State for Polar and Apolar Fluids. Ind. Eng. Chem.. Process Des. Dev., 25, 531-536, 1986.
  • Z. Xu, S. I. Sandler, Temperature dependent parameters and Peng-Robinson equation of state. Ind. Eng. Chem. Res., 26, 601-606, 1987.
  • P. M. Mathias, T. W. Copeman, Extension of the Peng-Robinson Equations of State to Complex Mixtures: Evaluation of the Various Forms of the Local Composition Concept. Fluid Phase Equilibria, 13, 91108 (1983).
  • M. A. Trebble, P. R. Bishnoi, Development of a new four-parameter cubic equation of state. Fluid Phase Equilibria, 35, 1-18, 1987.
  • C. Coquelet, A. Chapoy, D. Richon, Development of a New Alpha Function for the Peng-Robinson Equation of State: Comparative Study of Alpha Function Models for Pure Gases (Natural Gas Components) and Water-Gas Systems. Int. J. Thermophysics, 25, 133-158, 2004.
  • N. F. Carnahan, K. E. Starling. Intermolecular Repulsions and the Equation of State for Fluids. AIChE J, 18, 1184-1188, 1972.
  • R. De Santis, F. Gironi, L. Marrelli, Vapor-Liquid Equilibrium from a Hard-Sphere Equation of State. Ind. Eng. Chem. Res. 15, 183-189, 1976.
  • R. J. Sadus, Equations of state for fluids: The Dieterici approach revisited. J. Chem. Phys., 115, 1460-1462, 200
  • R. J. Sadus, New Dieterici-type equations of state for fluid phase equilibria. Fluid Phase Equilibria, 212, 3139, 2003.
  • R.H. Perry, D. W. Green, Perry’s Chemical Engineers’ Handbook, 7 th Edition, McGraw Hill, USA, 1997.
Year 2014, , 21 - 26, 01.02.2014
https://doi.org/10.5541/ijot.77015

Abstract

References

  • M. M. Abbot, Thirteen Ways of Looking at the van der Waals Equation. Chem. Eng. Progress, 2, 25-37, 1989.
  • G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci., 27, 1197-1203, 1972.
  • D-Y. Peng, D. B. Robinson, A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam., 15, 59-64, 19 Y. S. Wei, R. J. Sadus, Equations of State for the Calculation of Fluid Phase Equilibria. AIChE J, 46, 169196, 2000.
  • K. Nasrifar, M. Moshfeghian, A new cubic equation of state for simple fluids: pure and mixture. Fluid Phase Equilibria, 190, 73-88 (2001).
  • C. H. Twu, J. E. Coon, J. R. Cunninghan, A new generalized alpha function for a cubic equation of state Part Peng-Robinson equation. Fluid Phase Equilibria, 105, 49-59, 1995.
  • M-R. Riazi, G. A. Mansoori, Simple equation of state accurately predicts hydrocarbon densities. Oil and Gas Journal, 12, 108-111, 1993.
  • S. Hajipour, M. Edalat, A new hard sphere cubic equation of state for predicting fluids’ properties and vapor-liquid phase equilibrium calculations. Journal of Phase Equilibria and Difusion, 29, 322-332, 2008.
  • R. F. Checoni, S. P. Ravagnani, (2013). Studies about Equation of State for Pure Associated Fluids: Temperature Dependent Co-Volume Accounting a Physically Consistent Repulsive Term, Int. J. Thermo., 16, 20-27, 2013.
  • H. Toghiani, D. S. Viswanath, A Cubic Equation of State for Polar and Apolar Fluids. Ind. Eng. Chem.. Process Des. Dev., 25, 531-536, 1986.
  • Z. Xu, S. I. Sandler, Temperature dependent parameters and Peng-Robinson equation of state. Ind. Eng. Chem. Res., 26, 601-606, 1987.
  • P. M. Mathias, T. W. Copeman, Extension of the Peng-Robinson Equations of State to Complex Mixtures: Evaluation of the Various Forms of the Local Composition Concept. Fluid Phase Equilibria, 13, 91108 (1983).
  • M. A. Trebble, P. R. Bishnoi, Development of a new four-parameter cubic equation of state. Fluid Phase Equilibria, 35, 1-18, 1987.
  • C. Coquelet, A. Chapoy, D. Richon, Development of a New Alpha Function for the Peng-Robinson Equation of State: Comparative Study of Alpha Function Models for Pure Gases (Natural Gas Components) and Water-Gas Systems. Int. J. Thermophysics, 25, 133-158, 2004.
  • N. F. Carnahan, K. E. Starling. Intermolecular Repulsions and the Equation of State for Fluids. AIChE J, 18, 1184-1188, 1972.
  • R. De Santis, F. Gironi, L. Marrelli, Vapor-Liquid Equilibrium from a Hard-Sphere Equation of State. Ind. Eng. Chem. Res. 15, 183-189, 1976.
  • R. J. Sadus, Equations of state for fluids: The Dieterici approach revisited. J. Chem. Phys., 115, 1460-1462, 200
  • R. J. Sadus, New Dieterici-type equations of state for fluid phase equilibria. Fluid Phase Equilibria, 212, 3139, 2003.
  • R.H. Perry, D. W. Green, Perry’s Chemical Engineers’ Handbook, 7 th Edition, McGraw Hill, USA, 1997.
There are 18 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Ricardo Checoni

Martin Aznar This is me

Publication Date February 1, 2014
Published in Issue Year 2014

Cite

APA Checoni, R., & Aznar, M. (2014). Comparative Study between Cubic and non-Cubic Equations of State Using Carnahan-Starling Repulsive Term: Application of Temperature-Dependent Alpha and Beta Functions. International Journal of Thermodynamics, 17(1), 21-26. https://doi.org/10.5541/ijot.77015
AMA Checoni R, Aznar M. Comparative Study between Cubic and non-Cubic Equations of State Using Carnahan-Starling Repulsive Term: Application of Temperature-Dependent Alpha and Beta Functions. International Journal of Thermodynamics. February 2014;17(1):21-26. doi:10.5541/ijot.77015
Chicago Checoni, Ricardo, and Martin Aznar. “Comparative Study Between Cubic and Non-Cubic Equations of State Using Carnahan-Starling Repulsive Term: Application of Temperature-Dependent Alpha and Beta Functions”. International Journal of Thermodynamics 17, no. 1 (February 2014): 21-26. https://doi.org/10.5541/ijot.77015.
EndNote Checoni R, Aznar M (February 1, 2014) Comparative Study between Cubic and non-Cubic Equations of State Using Carnahan-Starling Repulsive Term: Application of Temperature-Dependent Alpha and Beta Functions. International Journal of Thermodynamics 17 1 21–26.
IEEE R. Checoni and M. Aznar, “Comparative Study between Cubic and non-Cubic Equations of State Using Carnahan-Starling Repulsive Term: Application of Temperature-Dependent Alpha and Beta Functions”, International Journal of Thermodynamics, vol. 17, no. 1, pp. 21–26, 2014, doi: 10.5541/ijot.77015.
ISNAD Checoni, Ricardo - Aznar, Martin. “Comparative Study Between Cubic and Non-Cubic Equations of State Using Carnahan-Starling Repulsive Term: Application of Temperature-Dependent Alpha and Beta Functions”. International Journal of Thermodynamics 17/1 (February 2014), 21-26. https://doi.org/10.5541/ijot.77015.
JAMA Checoni R, Aznar M. Comparative Study between Cubic and non-Cubic Equations of State Using Carnahan-Starling Repulsive Term: Application of Temperature-Dependent Alpha and Beta Functions. International Journal of Thermodynamics. 2014;17:21–26.
MLA Checoni, Ricardo and Martin Aznar. “Comparative Study Between Cubic and Non-Cubic Equations of State Using Carnahan-Starling Repulsive Term: Application of Temperature-Dependent Alpha and Beta Functions”. International Journal of Thermodynamics, vol. 17, no. 1, 2014, pp. 21-26, doi:10.5541/ijot.77015.
Vancouver Checoni R, Aznar M. Comparative Study between Cubic and non-Cubic Equations of State Using Carnahan-Starling Repulsive Term: Application of Temperature-Dependent Alpha and Beta Functions. International Journal of Thermodynamics. 2014;17(1):21-6.