BibTex RIS Cite

Current Status and Perspectives of the Thermomolecular Engine Developing

Year 2014, , 33 - 41, 01.02.2014
https://doi.org/10.5541/ijot.77017

Abstract

Fundamentally new concept of a heat engine on the basis of heterogeneous working body, consisting of liquid and lyophobic towards it capillary-porous matrix was proposed in the middle of 80's. Unusualness of a new thermodynamic cycle and engine is that the interface of condensed heterogeneous lyophobic systems (HWB), "liquid- rigid solid capillary-porous matrix", the carrier of free surface energy, serves as a working body (in thermodynamic sense) instead of traditional gas/steam. It was first proposed to use potential energy of intermolecular interaction instead of kinetic energy of random (thermal) gas / vapor molecules motion.

References

  • J. P. Carroll, US Patent No. 2009/0007562 (A1). Moorpark, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • R. A. Proeschel, US Patent No. 7028476 . Thousand Oaks, CA, US, 200 Retrieved from http://www.freepatentsonline.com .
  • H. Schoell, US Patent No. 7080512. Thousand Oaks, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • V. A. Eroshenko, Unusual Properties of One complex Thermodynamic System (in Russian). C. R. Acad. Sci. Ukraine, Ser. A, 10, 77-80, 1990.
  • V. A. Eroshenko, Thermomolecular energetics (in Russian). Industrial Heat Engineering, 14, 22-25, 1992. E.W. Washburn, The Dynamics of Capillary Flow. The Phys. Review, 17, 273–283, 1922.
  • V. A. Eroshenko, Thermal engine (in Russian). SovietRussian Patent No. 1,434,881, 1985.
  • V.A. Eroshenko, T.L. Yarosh, Synthesis liquids with a high value of the temperature coefficient of surface tension - a promising way to energy and material storage. Research Bulletin of the NTUU “KPI”, 2, 3750, 2012.
  • T. Reis, P. Woog, Introduction a la chimie-fisique des surfaces (vol. 1). Paris, Dunod, 1952.
  • V.A. Eroshenko, Non-compressibilité et nondilatabilité adiabatique d'un système thermodynamique complexe. Entropie, 196,17-23, 1996.
  • V. A. Eroshenko, Rotary Eroshenko’s thermal engine (in Russian). Soviet-Russian Patent No. 1,452,262, 19 Table Characteristics of modern HWB. № The composition of HWB HWB parameters Reference Liquid Matrix Р int , MPa P ext , MPa H, (%) T, ˚С ΔU, V  , % r pore, nm 1 Distilled water v. 8 ± 4 * 14 7 100 1 v. 15 5 100 7 v 16 W.s. KCl Zeolite CBV-901 HY (mod. SiCl 4 ) 3) 3) 268 24 m. &&& &&& * 17 6 14 50 313 18 11 17 29 353 19 W.s. sarcosil 4) Silica Fluka 100 C 8 (see above) 16 100 env. 8 ± 4 * 20 4 100 env. 5 21 W.s. SCH 5) 2 100 env. 5 22 W.s. NaCl Zeolite ZSM-5 (no mod.) 56 56 ≈0 358 0.53 23 82 82 ≈0 295 24 112 112 ≈0 295 26 m. 25 W.s. КCl Silica Davsil (mod. silyl groups) -380 15 4 * 273 58 m. 0.56 * 34 145 283 35 157 293 36 186 303 37 203 313 38 180 323 39 160 333 Terms and abbreviations used in the table: * The values obtained from PV-diagrams. n / a - not available. env. – Environment temperature. Exact value is not specified. W.s. - Water solution. Concentration: 24m. - Mass concentration (  m , ); 24v. - Bulk concentration (  v , ); 24 - type is not specified. 1) The method of modification - the same as for the MTS-1g. 2) The method of modification is not specified. Material is hydrophobized by the manufacturer. 3) At temperature of -5˚ C HWB has hydrophilic properties. Intrusion occurs spontaneously, extrusion doesn’t occur. 4) Chemical formula of sarcosil - CH 3 (CH 2 ) 10 CON(CH 3 )CH 2 COONa. 5) Chemical formula of SCH – CH 39 NaO 5 x H 2 O. Control action that changes HWB properties. V. A. Eroshenko, A New Paradigm of Mechanical Energy Dissipation. Part 1-2: Theoretical Aspects and practical Solutions. Journal Proceedings of Mechanical Engineers, Part D: Journal of Automobile Engineering, 221, 285–312, 2007.
  • V. A. Eroshenko, Hydrocapillarly engine with external heat supply (in Russian). Soviet-Russian Patent No. 1,508,665, 1987.
  • V. A. Eroshenko, US Patent No. 6615959. Colombes, FR, 2003. Retrieved from http://www.freepatentsonline.com .
  • V. A. Eroshenko and V. I. Aistov, Heat Engine Cycles Optimization According to Thermodynamic Compactness (in Russian). Industrial Heat Engineering, 12, 60–64, 19 L. Tzanis, M. Trzpit, M. Soulard & J. Patarin,. Energetic performances of channel and cage-type zeosils. J. Phys. Chem. C., 116, 20389−20395, 2012.
  • M.A. Saada, M. Soulard, B. Marler, G. Gies J. Patarin, High-pressure water intrusion investigation of pure silica RUB-41 and S-SOD Zeolite Materials. J. Phys. Chem., 115, 425-430, 2011.
  • A. Laouir, L. Luo, D. Tondeur, Thermal machines based on surface energy of wetting: Thermodynamic analysis. AIChE Journal, 49, 764–781, 2003.
  • E.J. Jadczak, C. Magret, P. Ollivier, F. Quenardel, US Patent No 2013/022448 (A1). SNECMA, Paris, FR, 2013. Retrieved from http://www.freepatentsonline.com.
  • A. Laouir, D. Tondeur, Thermodynamic Aspects of Capillary Flows., African Physical Review, 1, 24-25, 200 A. Han, Y. Qiao, Pressure-induced infiltration of aqueous solutions of multiple promoters in a nanoporous silica. J. Am. Chem. Soc., 128, 10348-10349, 2006.
  • A. Han, Y. Qiao, Thermal effects on infiltration of a solubility-sensitive volume-memory liquid. Philosophical Magazine Letters., 87, 25-31, 2007.
  • A. Han, Y. Qiao, A volume-memory liquid. Applied Physics Letters, 91, 173123-1 - 173123-3, 2007.
  • A. Han, Y. Qiao, Infiltration pressure of a nanoporous liquid spring modified by an electrolyte. J. Mater. Res., 22, 644-648, 2007.
  • Y. Qiao, US Patent No. 2009/0243428 (A1). San Diego, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • Y. Qiao, Z. Kong, US Patent No. 2010/0225199 (A1). Akron, OH, US, 20 Retrieved from http://www.freepatentsonline.com.
  • A. Galaitsis, US Patent No. 2006/0246288 (A1). Lexington, MA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • L. Liu, Nanofluidics: Fundamentals and Applications in Energy Conversion. (Dissertation, submitted in partial fulfillment of the requirements for the degree of PhD), Columbia University, USA, 2010. Retrieved from http://academiccommons.columbia.edu/.
  • V.S. Egorov, A. Portyanoy, A.P. Sorokin, V.G. Malcev & R. M. Voznesenskiy. RU Patent No. 2138086 (C1). Obninsk, Russian Federation, 1999. Abstract retrieved from http://ru-patent.info.
  • A.G. Portyanoy, E.N. Serdun, A.P. Sorokin & V.G. Malcev, RU Patent No. 2187742 (C1). Obninsk, Russian
  • Int. J. of Thermodynamics (IJoT) Vol. 17 (No. 1) / 41
Year 2014, , 33 - 41, 01.02.2014
https://doi.org/10.5541/ijot.77017

Abstract

References

  • J. P. Carroll, US Patent No. 2009/0007562 (A1). Moorpark, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • R. A. Proeschel, US Patent No. 7028476 . Thousand Oaks, CA, US, 200 Retrieved from http://www.freepatentsonline.com .
  • H. Schoell, US Patent No. 7080512. Thousand Oaks, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • V. A. Eroshenko, Unusual Properties of One complex Thermodynamic System (in Russian). C. R. Acad. Sci. Ukraine, Ser. A, 10, 77-80, 1990.
  • V. A. Eroshenko, Thermomolecular energetics (in Russian). Industrial Heat Engineering, 14, 22-25, 1992. E.W. Washburn, The Dynamics of Capillary Flow. The Phys. Review, 17, 273–283, 1922.
  • V. A. Eroshenko, Thermal engine (in Russian). SovietRussian Patent No. 1,434,881, 1985.
  • V.A. Eroshenko, T.L. Yarosh, Synthesis liquids with a high value of the temperature coefficient of surface tension - a promising way to energy and material storage. Research Bulletin of the NTUU “KPI”, 2, 3750, 2012.
  • T. Reis, P. Woog, Introduction a la chimie-fisique des surfaces (vol. 1). Paris, Dunod, 1952.
  • V.A. Eroshenko, Non-compressibilité et nondilatabilité adiabatique d'un système thermodynamique complexe. Entropie, 196,17-23, 1996.
  • V. A. Eroshenko, Rotary Eroshenko’s thermal engine (in Russian). Soviet-Russian Patent No. 1,452,262, 19 Table Characteristics of modern HWB. № The composition of HWB HWB parameters Reference Liquid Matrix Р int , MPa P ext , MPa H, (%) T, ˚С ΔU, V  , % r pore, nm 1 Distilled water v. 8 ± 4 * 14 7 100 1 v. 15 5 100 7 v 16 W.s. KCl Zeolite CBV-901 HY (mod. SiCl 4 ) 3) 3) 268 24 m. &&& &&& * 17 6 14 50 313 18 11 17 29 353 19 W.s. sarcosil 4) Silica Fluka 100 C 8 (see above) 16 100 env. 8 ± 4 * 20 4 100 env. 5 21 W.s. SCH 5) 2 100 env. 5 22 W.s. NaCl Zeolite ZSM-5 (no mod.) 56 56 ≈0 358 0.53 23 82 82 ≈0 295 24 112 112 ≈0 295 26 m. 25 W.s. КCl Silica Davsil (mod. silyl groups) -380 15 4 * 273 58 m. 0.56 * 34 145 283 35 157 293 36 186 303 37 203 313 38 180 323 39 160 333 Terms and abbreviations used in the table: * The values obtained from PV-diagrams. n / a - not available. env. – Environment temperature. Exact value is not specified. W.s. - Water solution. Concentration: 24m. - Mass concentration (  m , ); 24v. - Bulk concentration (  v , ); 24 - type is not specified. 1) The method of modification - the same as for the MTS-1g. 2) The method of modification is not specified. Material is hydrophobized by the manufacturer. 3) At temperature of -5˚ C HWB has hydrophilic properties. Intrusion occurs spontaneously, extrusion doesn’t occur. 4) Chemical formula of sarcosil - CH 3 (CH 2 ) 10 CON(CH 3 )CH 2 COONa. 5) Chemical formula of SCH – CH 39 NaO 5 x H 2 O. Control action that changes HWB properties. V. A. Eroshenko, A New Paradigm of Mechanical Energy Dissipation. Part 1-2: Theoretical Aspects and practical Solutions. Journal Proceedings of Mechanical Engineers, Part D: Journal of Automobile Engineering, 221, 285–312, 2007.
  • V. A. Eroshenko, Hydrocapillarly engine with external heat supply (in Russian). Soviet-Russian Patent No. 1,508,665, 1987.
  • V. A. Eroshenko, US Patent No. 6615959. Colombes, FR, 2003. Retrieved from http://www.freepatentsonline.com .
  • V. A. Eroshenko and V. I. Aistov, Heat Engine Cycles Optimization According to Thermodynamic Compactness (in Russian). Industrial Heat Engineering, 12, 60–64, 19 L. Tzanis, M. Trzpit, M. Soulard & J. Patarin,. Energetic performances of channel and cage-type zeosils. J. Phys. Chem. C., 116, 20389−20395, 2012.
  • M.A. Saada, M. Soulard, B. Marler, G. Gies J. Patarin, High-pressure water intrusion investigation of pure silica RUB-41 and S-SOD Zeolite Materials. J. Phys. Chem., 115, 425-430, 2011.
  • A. Laouir, L. Luo, D. Tondeur, Thermal machines based on surface energy of wetting: Thermodynamic analysis. AIChE Journal, 49, 764–781, 2003.
  • E.J. Jadczak, C. Magret, P. Ollivier, F. Quenardel, US Patent No 2013/022448 (A1). SNECMA, Paris, FR, 2013. Retrieved from http://www.freepatentsonline.com.
  • A. Laouir, D. Tondeur, Thermodynamic Aspects of Capillary Flows., African Physical Review, 1, 24-25, 200 A. Han, Y. Qiao, Pressure-induced infiltration of aqueous solutions of multiple promoters in a nanoporous silica. J. Am. Chem. Soc., 128, 10348-10349, 2006.
  • A. Han, Y. Qiao, Thermal effects on infiltration of a solubility-sensitive volume-memory liquid. Philosophical Magazine Letters., 87, 25-31, 2007.
  • A. Han, Y. Qiao, A volume-memory liquid. Applied Physics Letters, 91, 173123-1 - 173123-3, 2007.
  • A. Han, Y. Qiao, Infiltration pressure of a nanoporous liquid spring modified by an electrolyte. J. Mater. Res., 22, 644-648, 2007.
  • Y. Qiao, US Patent No. 2009/0243428 (A1). San Diego, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • Y. Qiao, Z. Kong, US Patent No. 2010/0225199 (A1). Akron, OH, US, 20 Retrieved from http://www.freepatentsonline.com.
  • A. Galaitsis, US Patent No. 2006/0246288 (A1). Lexington, MA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • L. Liu, Nanofluidics: Fundamentals and Applications in Energy Conversion. (Dissertation, submitted in partial fulfillment of the requirements for the degree of PhD), Columbia University, USA, 2010. Retrieved from http://academiccommons.columbia.edu/.
  • V.S. Egorov, A. Portyanoy, A.P. Sorokin, V.G. Malcev & R. M. Voznesenskiy. RU Patent No. 2138086 (C1). Obninsk, Russian Federation, 1999. Abstract retrieved from http://ru-patent.info.
  • A.G. Portyanoy, E.N. Serdun, A.P. Sorokin & V.G. Malcev, RU Patent No. 2187742 (C1). Obninsk, Russian
  • Int. J. of Thermodynamics (IJoT) Vol. 17 (No. 1) / 41
There are 27 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Artem Popyk

Valentin Eroshenko This is me

Publication Date February 1, 2014
Published in Issue Year 2014

Cite

APA Popyk, A., & Eroshenko, V. (2014). Current Status and Perspectives of the Thermomolecular Engine Developing. International Journal of Thermodynamics, 17(1), 33-41. https://doi.org/10.5541/ijot.77017
AMA Popyk A, Eroshenko V. Current Status and Perspectives of the Thermomolecular Engine Developing. International Journal of Thermodynamics. February 2014;17(1):33-41. doi:10.5541/ijot.77017
Chicago Popyk, Artem, and Valentin Eroshenko. “Current Status and Perspectives of the Thermomolecular Engine Developing”. International Journal of Thermodynamics 17, no. 1 (February 2014): 33-41. https://doi.org/10.5541/ijot.77017.
EndNote Popyk A, Eroshenko V (February 1, 2014) Current Status and Perspectives of the Thermomolecular Engine Developing. International Journal of Thermodynamics 17 1 33–41.
IEEE A. Popyk and V. Eroshenko, “Current Status and Perspectives of the Thermomolecular Engine Developing”, International Journal of Thermodynamics, vol. 17, no. 1, pp. 33–41, 2014, doi: 10.5541/ijot.77017.
ISNAD Popyk, Artem - Eroshenko, Valentin. “Current Status and Perspectives of the Thermomolecular Engine Developing”. International Journal of Thermodynamics 17/1 (February 2014), 33-41. https://doi.org/10.5541/ijot.77017.
JAMA Popyk A, Eroshenko V. Current Status and Perspectives of the Thermomolecular Engine Developing. International Journal of Thermodynamics. 2014;17:33–41.
MLA Popyk, Artem and Valentin Eroshenko. “Current Status and Perspectives of the Thermomolecular Engine Developing”. International Journal of Thermodynamics, vol. 17, no. 1, 2014, pp. 33-41, doi:10.5541/ijot.77017.
Vancouver Popyk A, Eroshenko V. Current Status and Perspectives of the Thermomolecular Engine Developing. International Journal of Thermodynamics. 2014;17(1):33-41.

Cited By