BibTex RIS Cite

Numerical Prediction of Radiation and Air Preheating Effects on the Soot Formation in a Confined Laminar Co-Flow Diffusion Flame

Year 2015, , 1 - 11, 07.03.2015
https://doi.org/10.5541/ijot.1034000588

Abstract

A numerical model has been developed for thorough investigation of the radiation and air-preheating effect on the sooting behavior of a diffusion flame. An explicit finite difference scheme has been adopted for the solution of different conservation equations for reacting flows along with the soot conservation equations. A variable size adaptive grid system has been considered using hyperbolic distribution to capture the sharp gradients of the field variables. Temperature distribution pattern does not change when radiation effect is considered, but peak temperature is lowered due to radiative heat loss. On the other hand, air-preheating not only increases the peak temperature, but also changes the distribution pattern significantly. Radiation decreases the soot volume fraction and soot number density to a large extent both for non-preheated and preheated case. Soot diameter is not much affected due to radiation, but it increases with preheating of air.

References

  • Ku, J. C., Tong, U., and Greenberg P. S. Measurements and modeling of soot formation and radiation in microgravity jet diffusion flames. HTD-Vol. 335, Proc. of the ASME Heat Transfer Division, Vol. 4, ASME 1996.
  • McEnally, C. S., Schaffer, A. M., Long, M. B., Pfefferle, L. D., Smooke, M. D. and Colket, M. B. Computational and experimental study of soot formation in a coflow laminar ethylene diffusion flame. Twenty-Seventh Combustion, The Combustion Institute, 1497-1505, 1998. (International) on
  • Syed, K. J., Stewart, C. D. and Moss, J. B., Modeling soot formation and thermal radiation in buoyant turbulent diffusion flames. Twenty Third Symposium (International) on Combustion, The Combustion Institute, 1533-1541, 1990.
  • Moss, J. B., Stewart, C. D. and Young, K. J. Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Combustion Flame, 101, 491-500, 1995.
  • Said, R., Garo, A. and Borghi, R. Soot formation modeling for turbulent flames. Combustion Flame, 108, 71-86, 1997.
  • Sivathanu, Y. R. and Gore, J. P. Effects of gas-band radiation on soot kinetics in laminar methane/air diffusion flames. Combustion Flame, 110, 256-263, 1997.
  • Smooke, M. D., McEnally, C. S., Pfefferle, L. D., Hall, R. J. and Colket, M. B. Computational and experimental study of soot formation in a coflow laminar diffusion flame. Combustion Flame, 117, 117-139, 1999.
  • Liu, F., Guo, H., Smallwood, G. J. and Gulder, Omer L. Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. J. Quantitative Spectroscopy & Radiative Transfer, 73, 409-421, 2002.
  • Guo, H., Liu, F., Smallwood, G. J. and Gulder, Omer L. The flame preheating effect on numerical modeling of soot formation in a two-dimensional laminar ethylene- air diffusion flame. Combustion Theory and Modeling, 6, 173-187, 2002.
  • Smooke, M. D., Long, M. B., Connelly, B. C., Colket, M. B. and Hall, R. J. Soot formation in laminar diffusion flames. Combustion Flame, 143, 613-628, 2005.
  • Kamal, M. M. Soot formation and oxidation in normal and inverse diffusion flames. J. Power Energy, 221, 481-495, 2007.
  • Saji, C. B., Balaji, C. and Sundarajan, T. Investigation of soot transport and radiative heat transfer in an ethylene jet diffusion flame. Int. J. Heat Mass Transfer, 51, 4287-4299, 2008.
  • Mitchell, R. E., Sarofim, A. F., and Clomburg, L. A. Experimental and numerical investigation of confined laminar diffusion flames. Combustion Flame, 37, 227 – 244, 1980.
  • Smooke, M. D., Mitchell, R. E. and Keys, D. E. Numerical solution of two-dimensional axisymmetric laminar diffusion flames. Combustion Sci. Technology, 67, 85-122, 1989.
  • Datta, A. and Saha, A., Contributions of self- absorption and soot on radiation heat transfer in a laminar methane-air diffusion flame. Proc.of IMechE., 221, 955-970, 2006.
  • Barlow, R. S., Karpetis, A. N., Frank, J. H. and Chen, J. Y. Scalar profiles and NO-formation in laminar opposed flow partially premixed methane/air flames. Combustion Flame, 127, 2102-2118, 2001.
  • Lee, K. B., Thring, M. W. and Beer, J. M. On the rate of soot in a laminar soot flame. Combustion Flame, 6, 137-145, 1962.
  • Santoro, R. J., Yeh, T. T., Horvath, J. J., and Semerjian, H. G. The transport and growth of soot particle in laminar diffusion flames. Combustion Sci. Technol., 53, 89-115, 1987.
  • Hirt, C. W., and Cook, J. L. Calculating three- dimensional flows around structures and over rough terrain. J. Comp. Phys., 10, 324–338, 1972.
  • Datta, A. Effects of variable property formulation on the prediction of a CH4-air laminar jet diffusion flame. Proc. of the ISHMT/ASME Heat and Mass Transfer Conference, Tata McGraw-Hill, India, 532, 2004.
  • Patankar, S. V., Numerical heat and mass transfer and fluid flow, Hemisphere, New York, 1980.
  • Hirt, C. W., Nickols, B. D., and Romero, N. C. SOLA – A Numerical Solution Algorithm for Transient Fluid Flows. Los Alamos Scientific Laboratory Report, LA – 5852, Los Alamos, New Mexico, 1975.
  • Guo, H., Trottier, S., Johnson, M. R. and Small wood, G. J., A numerical investigation on soot formation from laminar diffusion flames of ethylene/methane mixture. Proc. of Summer Heat Transfer Conference, USA, 1-7, 2008.
Year 2015, , 1 - 11, 07.03.2015
https://doi.org/10.5541/ijot.1034000588

Abstract

References

  • Ku, J. C., Tong, U., and Greenberg P. S. Measurements and modeling of soot formation and radiation in microgravity jet diffusion flames. HTD-Vol. 335, Proc. of the ASME Heat Transfer Division, Vol. 4, ASME 1996.
  • McEnally, C. S., Schaffer, A. M., Long, M. B., Pfefferle, L. D., Smooke, M. D. and Colket, M. B. Computational and experimental study of soot formation in a coflow laminar ethylene diffusion flame. Twenty-Seventh Combustion, The Combustion Institute, 1497-1505, 1998. (International) on
  • Syed, K. J., Stewart, C. D. and Moss, J. B., Modeling soot formation and thermal radiation in buoyant turbulent diffusion flames. Twenty Third Symposium (International) on Combustion, The Combustion Institute, 1533-1541, 1990.
  • Moss, J. B., Stewart, C. D. and Young, K. J. Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Combustion Flame, 101, 491-500, 1995.
  • Said, R., Garo, A. and Borghi, R. Soot formation modeling for turbulent flames. Combustion Flame, 108, 71-86, 1997.
  • Sivathanu, Y. R. and Gore, J. P. Effects of gas-band radiation on soot kinetics in laminar methane/air diffusion flames. Combustion Flame, 110, 256-263, 1997.
  • Smooke, M. D., McEnally, C. S., Pfefferle, L. D., Hall, R. J. and Colket, M. B. Computational and experimental study of soot formation in a coflow laminar diffusion flame. Combustion Flame, 117, 117-139, 1999.
  • Liu, F., Guo, H., Smallwood, G. J. and Gulder, Omer L. Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. J. Quantitative Spectroscopy & Radiative Transfer, 73, 409-421, 2002.
  • Guo, H., Liu, F., Smallwood, G. J. and Gulder, Omer L. The flame preheating effect on numerical modeling of soot formation in a two-dimensional laminar ethylene- air diffusion flame. Combustion Theory and Modeling, 6, 173-187, 2002.
  • Smooke, M. D., Long, M. B., Connelly, B. C., Colket, M. B. and Hall, R. J. Soot formation in laminar diffusion flames. Combustion Flame, 143, 613-628, 2005.
  • Kamal, M. M. Soot formation and oxidation in normal and inverse diffusion flames. J. Power Energy, 221, 481-495, 2007.
  • Saji, C. B., Balaji, C. and Sundarajan, T. Investigation of soot transport and radiative heat transfer in an ethylene jet diffusion flame. Int. J. Heat Mass Transfer, 51, 4287-4299, 2008.
  • Mitchell, R. E., Sarofim, A. F., and Clomburg, L. A. Experimental and numerical investigation of confined laminar diffusion flames. Combustion Flame, 37, 227 – 244, 1980.
  • Smooke, M. D., Mitchell, R. E. and Keys, D. E. Numerical solution of two-dimensional axisymmetric laminar diffusion flames. Combustion Sci. Technology, 67, 85-122, 1989.
  • Datta, A. and Saha, A., Contributions of self- absorption and soot on radiation heat transfer in a laminar methane-air diffusion flame. Proc.of IMechE., 221, 955-970, 2006.
  • Barlow, R. S., Karpetis, A. N., Frank, J. H. and Chen, J. Y. Scalar profiles and NO-formation in laminar opposed flow partially premixed methane/air flames. Combustion Flame, 127, 2102-2118, 2001.
  • Lee, K. B., Thring, M. W. and Beer, J. M. On the rate of soot in a laminar soot flame. Combustion Flame, 6, 137-145, 1962.
  • Santoro, R. J., Yeh, T. T., Horvath, J. J., and Semerjian, H. G. The transport and growth of soot particle in laminar diffusion flames. Combustion Sci. Technol., 53, 89-115, 1987.
  • Hirt, C. W., and Cook, J. L. Calculating three- dimensional flows around structures and over rough terrain. J. Comp. Phys., 10, 324–338, 1972.
  • Datta, A. Effects of variable property formulation on the prediction of a CH4-air laminar jet diffusion flame. Proc. of the ISHMT/ASME Heat and Mass Transfer Conference, Tata McGraw-Hill, India, 532, 2004.
  • Patankar, S. V., Numerical heat and mass transfer and fluid flow, Hemisphere, New York, 1980.
  • Hirt, C. W., Nickols, B. D., and Romero, N. C. SOLA – A Numerical Solution Algorithm for Transient Fluid Flows. Los Alamos Scientific Laboratory Report, LA – 5852, Los Alamos, New Mexico, 1975.
  • Guo, H., Trottier, S., Johnson, M. R. and Small wood, G. J., A numerical investigation on soot formation from laminar diffusion flames of ethylene/methane mixture. Proc. of Summer Heat Transfer Conference, USA, 1-7, 2008.
There are 23 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Bijan Mandal

Achin Chowdhuri This is me

Somnatj Chakrabarti This is me

Publication Date March 7, 2015
Published in Issue Year 2015

Cite

APA Mandal, B., Chowdhuri, A., & Chakrabarti, S. (2015). Numerical Prediction of Radiation and Air Preheating Effects on the Soot Formation in a Confined Laminar Co-Flow Diffusion Flame. International Journal of Thermodynamics, 18(1), 1-11. https://doi.org/10.5541/ijot.1034000588
AMA Mandal B, Chowdhuri A, Chakrabarti S. Numerical Prediction of Radiation and Air Preheating Effects on the Soot Formation in a Confined Laminar Co-Flow Diffusion Flame. International Journal of Thermodynamics. March 2015;18(1):1-11. doi:10.5541/ijot.1034000588
Chicago Mandal, Bijan, Achin Chowdhuri, and Somnatj Chakrabarti. “Numerical Prediction of Radiation and Air Preheating Effects on the Soot Formation in a Confined Laminar Co-Flow Diffusion Flame”. International Journal of Thermodynamics 18, no. 1 (March 2015): 1-11. https://doi.org/10.5541/ijot.1034000588.
EndNote Mandal B, Chowdhuri A, Chakrabarti S (March 1, 2015) Numerical Prediction of Radiation and Air Preheating Effects on the Soot Formation in a Confined Laminar Co-Flow Diffusion Flame. International Journal of Thermodynamics 18 1 1–11.
IEEE B. Mandal, A. Chowdhuri, and S. Chakrabarti, “Numerical Prediction of Radiation and Air Preheating Effects on the Soot Formation in a Confined Laminar Co-Flow Diffusion Flame”, International Journal of Thermodynamics, vol. 18, no. 1, pp. 1–11, 2015, doi: 10.5541/ijot.1034000588.
ISNAD Mandal, Bijan et al. “Numerical Prediction of Radiation and Air Preheating Effects on the Soot Formation in a Confined Laminar Co-Flow Diffusion Flame”. International Journal of Thermodynamics 18/1 (March 2015), 1-11. https://doi.org/10.5541/ijot.1034000588.
JAMA Mandal B, Chowdhuri A, Chakrabarti S. Numerical Prediction of Radiation and Air Preheating Effects on the Soot Formation in a Confined Laminar Co-Flow Diffusion Flame. International Journal of Thermodynamics. 2015;18:1–11.
MLA Mandal, Bijan et al. “Numerical Prediction of Radiation and Air Preheating Effects on the Soot Formation in a Confined Laminar Co-Flow Diffusion Flame”. International Journal of Thermodynamics, vol. 18, no. 1, 2015, pp. 1-11, doi:10.5541/ijot.1034000588.
Vancouver Mandal B, Chowdhuri A, Chakrabarti S. Numerical Prediction of Radiation and Air Preheating Effects on the Soot Formation in a Confined Laminar Co-Flow Diffusion Flame. International Journal of Thermodynamics. 2015;18(1):1-11.