Research Article
BibTex RIS Cite

Thermodynamic Evaluation Of Solid Oxide Fuel Cells Converting Biogas Into Hydrogen And Electricity

Year 2021, , 204 - 214, 29.08.2021
https://doi.org/10.5541/ijot.877847

Abstract

Although biogas has many qualities as a source of renewable and distributed energy, most full-scale applications are large facilities due to the lack of efficient small-scale systems. In this context, solid oxide fuel cells (SOFC) have been promoted as an alternative to convert biogas into electricity and heat with high efficiency. However, few studies have considered the use of the anode exhaust gas to co-produce green hydrogen together with electricity and heat, which could increase the performance and profitability of these systems. Thus, since there is a lack of studies focusing on these systems, this research proposes a new approach to model SOFC with direct internal reforming to produce power, hydrogen and heat. The results indicate that the proposed system is capable of reaching exergy efficiencies between 57% and 69% depending on the methane content of biogas. Hydrogen separation reduces the amount of fuel that has to be burned, which leads to less destruction of exergy in multiple processes (e.g., mixers, burners and heat exchangers). However, this design change also diminishes the amount of heat delivered by the system (-82% compared with conventional cogeneration), which may negatively affect the energy integration with anaerobic digestion. In addition, major performance improvements can be achieved by optimizing the hydrogen recovery of the pressure swing adsorption and the SOFC operating temperature.

Supporting Institution

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Finance Code 001) ; Brazilian National Council for Scientific and Technological Development - CNPq

References

  • M. Gandiglio, A. Lanzini, M. Santarelli, M. Acri, T. Hakala, and M. Rautanen, “Results from an industrial size biogas-fed SOFC plant (the DEMOSOFC project),” International Journal of Hydrogen Energy, vol. 45, no. 8, pp. 5449–5464, Feb. 2020, doi: 10.1016/j.ijhydene.2019.08.022.
  • W. L. Becker, R. J. Braun, M. Penev, and M. Melaina, “Design and technoeconomic performance analysis of a 1MW solid oxide fuel cell polygeneration system for combined production of heat, hydrogen, and power,” Journal of Power Sources, vol. 200, pp. 34–44, Feb. 2012, doi: 10.1016/j.jpowsour.2011.10.040.
  • R. Nogueira Nakashima, D. Flórez-Orrego, H. I. Velásquez, and S. D. O. Junior, “Sugarcane bagasse and vinasse conversion to electricity and biofuels: an exergoeconomic and environmental assessment,” IJEX, vol. 33, no. 1, p. 44, 2020, doi: 10.1504/IJEX.2020.109623.
  • F. Palazzi, N. Autissier, F. M. A. Marechal, and D. Favrat, “A methodology for thermo-economic modeling and optimization of solid oxide fuel cell systems,” Applied Thermal Engineering, vol. 27, no. 16, pp. 2703–2712, Nov. 2007, doi: 10.1016/j.applthermaleng.2007.06.007.
  • M. Pérez‐Fortes et al., “Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements,” Fuel Cells, p. fuce.201800200, May 2019, doi: 10.1002/fuce.201800200.
  • J. Van herle, F. Maréchal, S. Leuenberger, Y. Membrez, O. Bucheli, and D. Favrat, “Process flow model of solid oxide fuel cell system supplied with sewage biogas,” Journal of Power Sources, vol. 131, no. 1–2, pp. 127–141, May 2004, doi: 10.1016/j.jpowsour.2004.01.013.
  • F. Curletti, M. Gandiglio, A. Lanzini, M. Santarelli, and F. Maréchal, “Large size biogas-fed Solid Oxide Fuel Cell power plants with carbon dioxide management: Technical and economic optimization,” Journal of Power Sources, vol. 294, pp. 669–690, Oct. 2015, doi: 10.1016/j.jpowsour.2015.06.091.
  • M. MosayebNezhad, A. S. Mehr, M. Gandiglio, A. Lanzini, and M. Santarelli, “Techno-economic assessment of biogas-fed CHP hybrid systems in a real wastewater treatment plant,” Applied Thermal Engineering, vol. 129, pp. 1263–1280, Jan. 2018, doi: 10.1016/j.applthermaleng.2017.10.115.
  • J. Larminie and A. Dicks, Fuel Cell Systems Explained: Larminie/Fuel Cell Systems Explained. West Sussex, England: John Wiley & Sons, Ltd,., 2003.
  • IEA, “Outlook for biogas and biomethane: Prospects for organic growth,” IEA, Paris, 2020. [Online]. Available: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth.
  • P. Häussinger, R. Lohmüller, and A. M. Watson, “Hydrogen, 2. Production,” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011.
  • S. A. Papoulias and I. E. Grossmann, “A structural optimization approach in process synthesis—II,” Computers & Chemical Engineering, vol. 7, no. 6, pp. 707–721, Jan. 1983, doi: 10.1016/0098-1354(83)85023-6.
  • C. Rackauckas and Q. Nie, “Differentialequations.jl–a performant and feature-rich ecosystem for solving differential equations in julia,” Journal of Open Research Software, vol. 5, no. 1, 2017.
  • I. H. Bell, J. Wronski, S. Quoilin, and V. Lemort, “Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp,” Ind. Eng. Chem. Res., vol. 53, no. 6, pp. 2498–2508, Feb. 2014, doi:10.1021/ie4033999.
  • B. J. McBride, M. J. Zehe, and S. Gordon, “NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species,” NASA Glenn Research Center, Cleveland, OH United States, NASA/TP-2002-211556, 2002.
  • E. N. Fuller, P. D. Schettler, and J. Calvin. Giddings, “New method for prediction of binary gas-phase diffusion coefficients,” Ind. Eng. Chem., vol. 58, no. 5, pp. 18–27, May 1966, doi: 10.1021/ie50677a007.
  • J. Szargut, Exergy method: technical and ecological applications. Southampton ; Boston: WIT Press, 2005.
  • I. Dunning, J. Huchette, and M. Lubin, “JuMP: A Modeling Language for Mathematical Optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017, doi: 10.1137/15M1020575.
  • A. Makhorin, GLPK (GNU Linear Programming Kit). Moscow, Russia: Department for Applied Informatics, Moscow Aviation Institute, 2012.
  • P. Aguiar, C. S. Adjiman, and N. P. Brandon, “Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance,” Journal of Power Sources, vol. 138, no. 1–2, pp. 120–136, Nov. 2004, doi: 10.1016/j.jpowsour.2004.06.040.
  • C. Bao, Z. Jiang, and X. Zhang, “Modeling mass transfer in solid oxide fuel cell anode: I. Comparison between Fickian, Stefan-Maxwell and dusty-gas models,” Journal of Power Sources, vol. 310, pp. 32–40, Apr. 2016, doi: 10.1016/j.jpowsour.2016.01.099.
  • R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena, Rev. 2. ed. New York: Wiley, 2007.
  • B. A. Haberman and J. B. Young, “Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell,” International Journal of Heat and Mass Transfer, vol. 47, no. 17–18, pp. 3617–3629, Aug. 2004, doi: 10.1016/j.ijheatmasstransfer.2004.04.010.
  • Y. Jiang and A. V. Virkar, “Fuel Composition and Diluent Effect on Gas Transport and Performance of Anode-Supported SOFCs,” J. Electrochem. Soc., vol. 150, no. 7, p. A942, 2003, doi: 10.1149/1.1579480.
  • R. O’Hayre, S.-W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016.
  • E. Achenbach and E. Riensche, “Methane/steam reforming kinetics for solid oxide fuel cells,” Journal of Power Sources, vol. 52, no. 2, pp. 283–288, Dec. 1994, doi: 10.1016/0378-7753(94)02146-5.
  • C. Bao, Z. Jiang, and X. Zhang, “Modeling mass transfer in solid oxide fuel cell anode: II. H2/CO co-oxidation and surface diffusion in synthesis-gas operation,” Journal of Power Sources, vol. 324, pp. 261–271, Aug. 2016, doi: 10.1016/j.jpowsour.2016.05.088.
  • Q. Fu, P. Freundt, J. Bomhard, and F. Hauler, “SOFC Stacks Operating under Direct Internal Steam Reforming of Methane,” Fuel Cells, vol. 17, no. 2, pp. 151–156, Apr. 2017, doi: 10.1002/fuce.201600078.
  • J. Van herle, F. Maréchal, S. Leuenberger, and D. Favrat, “Energy balance model of a SOFC cogenerator operated with biogas,” Journal of Power Sources, vol. 118, no. 1–2, pp. 375–383, May 2003, doi: 10.1016/S0378-7753(03)00103-4.
  • E. Fontell, T. Kivisaari, N. Christiansen, J.-B. Hansen, and J. Pålsson, “Conceptual study of a 250kW planar SOFC system for CHP application,” Journal of Power Sources, vol. 131, no. 1–2, pp. 49–56, May 2004, doi: 10.1016/j.jpowsour.2004.01.025.
  • R.-U. Dietrich, J. Oelze, A. Lindermeir, C. Spieker, C. Spitta, and M. Steffen, “Power Generation from Biogas using SOFC - Results for a 1 kW e Demonstration Unit,” Fuel Cells, vol. 14, no. 2, pp. 239–250, Apr. 2014, doi: 10.1002/fuce.201300033.
  • K. Girona, J. Laurencin, J. Fouletier, and F. Lefebvre-Joud, “Carbon deposition in CH4/CO2 operated SOFC: Simulation and experimentation studies,” Journal of Power Sources, vol. 210, pp. 381–391, Jul. 2012, doi: 10.1016/j.jpowsour.2011.12.005.
  • Ro. Peters et al., “Operation Experience with a 20 kW SOFC System,” Fuel Cells, vol. 14, no. 3, pp. 489–499, Jun. 2014, doi: 10.1002/fuce.201300184.
Year 2021, , 204 - 214, 29.08.2021
https://doi.org/10.5541/ijot.877847

Abstract

References

  • M. Gandiglio, A. Lanzini, M. Santarelli, M. Acri, T. Hakala, and M. Rautanen, “Results from an industrial size biogas-fed SOFC plant (the DEMOSOFC project),” International Journal of Hydrogen Energy, vol. 45, no. 8, pp. 5449–5464, Feb. 2020, doi: 10.1016/j.ijhydene.2019.08.022.
  • W. L. Becker, R. J. Braun, M. Penev, and M. Melaina, “Design and technoeconomic performance analysis of a 1MW solid oxide fuel cell polygeneration system for combined production of heat, hydrogen, and power,” Journal of Power Sources, vol. 200, pp. 34–44, Feb. 2012, doi: 10.1016/j.jpowsour.2011.10.040.
  • R. Nogueira Nakashima, D. Flórez-Orrego, H. I. Velásquez, and S. D. O. Junior, “Sugarcane bagasse and vinasse conversion to electricity and biofuels: an exergoeconomic and environmental assessment,” IJEX, vol. 33, no. 1, p. 44, 2020, doi: 10.1504/IJEX.2020.109623.
  • F. Palazzi, N. Autissier, F. M. A. Marechal, and D. Favrat, “A methodology for thermo-economic modeling and optimization of solid oxide fuel cell systems,” Applied Thermal Engineering, vol. 27, no. 16, pp. 2703–2712, Nov. 2007, doi: 10.1016/j.applthermaleng.2007.06.007.
  • M. Pérez‐Fortes et al., “Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements,” Fuel Cells, p. fuce.201800200, May 2019, doi: 10.1002/fuce.201800200.
  • J. Van herle, F. Maréchal, S. Leuenberger, Y. Membrez, O. Bucheli, and D. Favrat, “Process flow model of solid oxide fuel cell system supplied with sewage biogas,” Journal of Power Sources, vol. 131, no. 1–2, pp. 127–141, May 2004, doi: 10.1016/j.jpowsour.2004.01.013.
  • F. Curletti, M. Gandiglio, A. Lanzini, M. Santarelli, and F. Maréchal, “Large size biogas-fed Solid Oxide Fuel Cell power plants with carbon dioxide management: Technical and economic optimization,” Journal of Power Sources, vol. 294, pp. 669–690, Oct. 2015, doi: 10.1016/j.jpowsour.2015.06.091.
  • M. MosayebNezhad, A. S. Mehr, M. Gandiglio, A. Lanzini, and M. Santarelli, “Techno-economic assessment of biogas-fed CHP hybrid systems in a real wastewater treatment plant,” Applied Thermal Engineering, vol. 129, pp. 1263–1280, Jan. 2018, doi: 10.1016/j.applthermaleng.2017.10.115.
  • J. Larminie and A. Dicks, Fuel Cell Systems Explained: Larminie/Fuel Cell Systems Explained. West Sussex, England: John Wiley & Sons, Ltd,., 2003.
  • IEA, “Outlook for biogas and biomethane: Prospects for organic growth,” IEA, Paris, 2020. [Online]. Available: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth.
  • P. Häussinger, R. Lohmüller, and A. M. Watson, “Hydrogen, 2. Production,” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011.
  • S. A. Papoulias and I. E. Grossmann, “A structural optimization approach in process synthesis—II,” Computers & Chemical Engineering, vol. 7, no. 6, pp. 707–721, Jan. 1983, doi: 10.1016/0098-1354(83)85023-6.
  • C. Rackauckas and Q. Nie, “Differentialequations.jl–a performant and feature-rich ecosystem for solving differential equations in julia,” Journal of Open Research Software, vol. 5, no. 1, 2017.
  • I. H. Bell, J. Wronski, S. Quoilin, and V. Lemort, “Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp,” Ind. Eng. Chem. Res., vol. 53, no. 6, pp. 2498–2508, Feb. 2014, doi:10.1021/ie4033999.
  • B. J. McBride, M. J. Zehe, and S. Gordon, “NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species,” NASA Glenn Research Center, Cleveland, OH United States, NASA/TP-2002-211556, 2002.
  • E. N. Fuller, P. D. Schettler, and J. Calvin. Giddings, “New method for prediction of binary gas-phase diffusion coefficients,” Ind. Eng. Chem., vol. 58, no. 5, pp. 18–27, May 1966, doi: 10.1021/ie50677a007.
  • J. Szargut, Exergy method: technical and ecological applications. Southampton ; Boston: WIT Press, 2005.
  • I. Dunning, J. Huchette, and M. Lubin, “JuMP: A Modeling Language for Mathematical Optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017, doi: 10.1137/15M1020575.
  • A. Makhorin, GLPK (GNU Linear Programming Kit). Moscow, Russia: Department for Applied Informatics, Moscow Aviation Institute, 2012.
  • P. Aguiar, C. S. Adjiman, and N. P. Brandon, “Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance,” Journal of Power Sources, vol. 138, no. 1–2, pp. 120–136, Nov. 2004, doi: 10.1016/j.jpowsour.2004.06.040.
  • C. Bao, Z. Jiang, and X. Zhang, “Modeling mass transfer in solid oxide fuel cell anode: I. Comparison between Fickian, Stefan-Maxwell and dusty-gas models,” Journal of Power Sources, vol. 310, pp. 32–40, Apr. 2016, doi: 10.1016/j.jpowsour.2016.01.099.
  • R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena, Rev. 2. ed. New York: Wiley, 2007.
  • B. A. Haberman and J. B. Young, “Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell,” International Journal of Heat and Mass Transfer, vol. 47, no. 17–18, pp. 3617–3629, Aug. 2004, doi: 10.1016/j.ijheatmasstransfer.2004.04.010.
  • Y. Jiang and A. V. Virkar, “Fuel Composition and Diluent Effect on Gas Transport and Performance of Anode-Supported SOFCs,” J. Electrochem. Soc., vol. 150, no. 7, p. A942, 2003, doi: 10.1149/1.1579480.
  • R. O’Hayre, S.-W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016.
  • E. Achenbach and E. Riensche, “Methane/steam reforming kinetics for solid oxide fuel cells,” Journal of Power Sources, vol. 52, no. 2, pp. 283–288, Dec. 1994, doi: 10.1016/0378-7753(94)02146-5.
  • C. Bao, Z. Jiang, and X. Zhang, “Modeling mass transfer in solid oxide fuel cell anode: II. H2/CO co-oxidation and surface diffusion in synthesis-gas operation,” Journal of Power Sources, vol. 324, pp. 261–271, Aug. 2016, doi: 10.1016/j.jpowsour.2016.05.088.
  • Q. Fu, P. Freundt, J. Bomhard, and F. Hauler, “SOFC Stacks Operating under Direct Internal Steam Reforming of Methane,” Fuel Cells, vol. 17, no. 2, pp. 151–156, Apr. 2017, doi: 10.1002/fuce.201600078.
  • J. Van herle, F. Maréchal, S. Leuenberger, and D. Favrat, “Energy balance model of a SOFC cogenerator operated with biogas,” Journal of Power Sources, vol. 118, no. 1–2, pp. 375–383, May 2003, doi: 10.1016/S0378-7753(03)00103-4.
  • E. Fontell, T. Kivisaari, N. Christiansen, J.-B. Hansen, and J. Pålsson, “Conceptual study of a 250kW planar SOFC system for CHP application,” Journal of Power Sources, vol. 131, no. 1–2, pp. 49–56, May 2004, doi: 10.1016/j.jpowsour.2004.01.025.
  • R.-U. Dietrich, J. Oelze, A. Lindermeir, C. Spieker, C. Spitta, and M. Steffen, “Power Generation from Biogas using SOFC - Results for a 1 kW e Demonstration Unit,” Fuel Cells, vol. 14, no. 2, pp. 239–250, Apr. 2014, doi: 10.1002/fuce.201300033.
  • K. Girona, J. Laurencin, J. Fouletier, and F. Lefebvre-Joud, “Carbon deposition in CH4/CO2 operated SOFC: Simulation and experimentation studies,” Journal of Power Sources, vol. 210, pp. 381–391, Jul. 2012, doi: 10.1016/j.jpowsour.2011.12.005.
  • Ro. Peters et al., “Operation Experience with a 20 kW SOFC System,” Fuel Cells, vol. 14, no. 3, pp. 489–499, Jun. 2014, doi: 10.1002/fuce.201300184.
There are 33 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Regular Original Research Article
Authors

Rafael Nogueira Nakashima

Silvio De Oliveira

Publication Date August 29, 2021
Published in Issue Year 2021

Cite

APA Nogueira Nakashima, R., & De Oliveira, S. (2021). Thermodynamic Evaluation Of Solid Oxide Fuel Cells Converting Biogas Into Hydrogen And Electricity. International Journal of Thermodynamics, 24(3), 204-214. https://doi.org/10.5541/ijot.877847
AMA Nogueira Nakashima R, De Oliveira S. Thermodynamic Evaluation Of Solid Oxide Fuel Cells Converting Biogas Into Hydrogen And Electricity. International Journal of Thermodynamics. August 2021;24(3):204-214. doi:10.5541/ijot.877847
Chicago Nogueira Nakashima, Rafael, and Silvio De Oliveira. “Thermodynamic Evaluation Of Solid Oxide Fuel Cells Converting Biogas Into Hydrogen And Electricity”. International Journal of Thermodynamics 24, no. 3 (August 2021): 204-14. https://doi.org/10.5541/ijot.877847.
EndNote Nogueira Nakashima R, De Oliveira S (August 1, 2021) Thermodynamic Evaluation Of Solid Oxide Fuel Cells Converting Biogas Into Hydrogen And Electricity. International Journal of Thermodynamics 24 3 204–214.
IEEE R. Nogueira Nakashima and S. De Oliveira, “Thermodynamic Evaluation Of Solid Oxide Fuel Cells Converting Biogas Into Hydrogen And Electricity”, International Journal of Thermodynamics, vol. 24, no. 3, pp. 204–214, 2021, doi: 10.5541/ijot.877847.
ISNAD Nogueira Nakashima, Rafael - De Oliveira, Silvio. “Thermodynamic Evaluation Of Solid Oxide Fuel Cells Converting Biogas Into Hydrogen And Electricity”. International Journal of Thermodynamics 24/3 (August 2021), 204-214. https://doi.org/10.5541/ijot.877847.
JAMA Nogueira Nakashima R, De Oliveira S. Thermodynamic Evaluation Of Solid Oxide Fuel Cells Converting Biogas Into Hydrogen And Electricity. International Journal of Thermodynamics. 2021;24:204–214.
MLA Nogueira Nakashima, Rafael and Silvio De Oliveira. “Thermodynamic Evaluation Of Solid Oxide Fuel Cells Converting Biogas Into Hydrogen And Electricity”. International Journal of Thermodynamics, vol. 24, no. 3, 2021, pp. 204-1, doi:10.5541/ijot.877847.
Vancouver Nogueira Nakashima R, De Oliveira S. Thermodynamic Evaluation Of Solid Oxide Fuel Cells Converting Biogas Into Hydrogen And Electricity. International Journal of Thermodynamics. 2021;24(3):204-1.