Research Article
BibTex RIS Cite
Year 2021, , 134 - 149, 26.05.2021
https://doi.org/10.5541/ijot.878173

Abstract

References

  • C. Torres, A. Valero, V. Rangel, e A. Zaleta, “On the cost formation process of the residues”, Energy, vol. 33, no 2, p. 144–152, fev. 2008.
  • C. Torres e A. Valero, “Curso de Doctorado Termoeconomía, Dpto. Ingenieria Mecánica”. Universidad de Zaragoza, 2000.
  • S. A. A. G. Cerqueira, “Metodologias de Análise Termoeconômica de Sistemas [in Portuguese]”, Universidade Estadual de Campinas, Campinas, Brazil, 1999.
  • A. Lazzaretto e G. Tsatsaronis, “SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems”, Energy, vol. 31, no 8–9, p. 1257–1289, jan. 2006.
  • P. A. Arena e R. Borchiellini, “Application of different productive structures for thermoeconomic diagnosis of a combined cycle power plant”, Int. J. Therm. Sci., vol. 38, no 7, p. 601–612, jul. 1999.
  • İ. Dincer e M. A. Rosen, Exergy: Energy, Environment, and Sustainable Development, 1o ed. Elsevier Science, 2007.
  • M. A. Rosen e I. Dincer, “Exergy as the confluence of energy, environment and sustainable development”, Exergy, An Int. J., vol. 1, no 1, p. 3–13, jan. 2001.
  • M. A. Rosen e I. Dincer, “On Exergy and Environmental Impact”, Int. J. Energy Res., vol. 21, no 7, p. 643–654, jun. 1997.
  • H. Holmberg, M. Tuomaala, T. Haikonen, e P. Ahtila, “Allocation of fuel costs and CO2-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill”, Appl. Energy, vol. 93, p. 614–623, maio 2012.
  • J. A. M. Silva, D. Flórez-Orrego, e S. Oliveira, “An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels”, Energy, vol. 67, p. 490–495, abr. 2014.
  • D. Flórez-Orrego, J. A. M. Silva, e S. de Oliveira Jr., “Renewable and non-renewable exergy cost and specific CO2 emission of electricity generation: The Brazilian case”, Energy Convers. Manag., vol. 85, p. 619–629, set. 2014.
  • D. Flórez-Orrego, J. A. M. da Silva, H. Velásquez, e S. de Oliveira, “Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector”, Energy, vol. 88, p. 18–36, ago. 2015.
  • R. G. Santos, P. R. Faria, J. J. C. S. Santos, J. A. M. Silva, e D. Flórez-Orrego, “Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems”, Energy, vol. 117, p. 590–603, jan. 2016.
  • R. G. dos Santos, J. J. C. S. Santos, e J. A. M. da Silva, “Application of Thermoeconomics for CO2 Allocation for Net Power and Useful Heat in a Gas Turbine Cogeneration System”, Appl. Mech. Mater., vol. 830, p. 95–108, mar. 2016.
  • J. A. M. Silva e S. Oliveira, “An exergy-based approach to determine production cost and CO2 allocation in refineries”, Energy, vol. 67, p. 607–616, abr. 2014.
  • D. Flórez-Orrego e S. de Oliveira Junior, “On the efficiency, exergy costs and CO 2 emission cost allocation for an integrated syngas and ammonia production plant”, Energy, vol. 117, p. 341–360, dez. 2016.
  • J. A. M. da Silva e S. de Oliveira Junior, “Unit exergy cost and CO2 emissions of offshore petroleum production”, Energy, vol. 147, p. 757–766, mar. 2018.
  • J. Gao, Q. Zhang, X. Wang, D. Song, W. Liu, e W. Liu, “Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants”, Energy, vol. 152, p. 562–575, jun. 2018.
  • P. S. Ortiz, D. Flórez-Orrego, S. de Oliveira, R. M. Filho, P. Osseweijer, e J. Posada, “Unit exergy cost and specific CO2 emissions of the electricity generation in the Netherlands”, Energy, p. 118279, jul. 2020.
  • R. G. Santos, P. R. Faria, J. J. C. S. Santos, e J. A. M. da Silva, “Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems”, in Proceedings of Ecos 2015 - The 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact ff Energy Systems, 2015.
  • M. Carvalho, E. S. da Silva, S. L. F. Andersen, e R. Abrahão, “Life cycle assessment of the transesterification double step process for biodiesel production from refined soybean oil in Brazil”, Environ. Sci. Pollut. Res., vol. 23, no 11, p. 11025–11033, jun. 2016.
  • J. A. M. da Silva, J. J. C. S. Santos, M. Carvalho, e S. de Oliveira, “On the thermoeconomic and LCA methods for waste and fuel allocation in multiproduct systems”, Energy, vol. 127, p. 775–785, maio 2017.
  • A. F. C. Fortes, M. Carvalho, e J. A. M. da Silva, “Environmental impact and cost allocations for a dual product heat pump”, Energy Convers. Manag., vol. 173, p. 763–772, out. 2018.
  • M. . Rocha, E. E. S. Lora, O. J. Venturini, J. J. C. S. Santos, e A. . Moura, “Use of the life cycle assessment (LCA) for comparison of the environmental performance of four alternatives for the treatment and disposal of bioethanol stillage”, Int. Sugar J., vol. 112, p. 611–622, 2010.
  • M. Carvalho et al., “Alocação em sistemas energéticos multiproduto: revisão e proposta de métodos”, LALCA Rev. Latino-Americana em Avaliação do Ciclo Vida, vol. 4, p. e44660, jul. 2020.
  • E. J. C. Cavalcanti, M. Carvalho, e J. L. B. Azevedo, “Exergoenvironmental results of a eucalyptus biomass-fired power plant”, Energy, vol. 189, p. 116188, dez. 2019.
  • E. J. C. Cavalcanti, M. Carvalho, e D. R. S. da Silva, “Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system”, Energy Convers. Manag., vol. 222, p. 113232, out. 2020.
  • H. Cho, P. J. Mago, R. Luck, e L. M. Chamra, “Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme”, Appl. Energy, vol. 86, no 12, p. 2540–2549, dez. 2009.
  • J.-J. Wang, Y.-Y. Jing, e C.-F. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm”, Appl. Energy, vol. 87, no 4, p. 1325–1335, abr. 2010.
  • S. Bracco, G. Dentici, e S. Siri, “Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area”, Energy, vol. 55, p. 1014–1024, jun. 2013.
  • E. A. Pina, M. A. Lozano, e L. M. Serra, “A multiperiod multiobjective framework for the synthesis of trigeneration systems in tertiary sector buildings”, Int. J. Energy Res., vol. 44, no 2, p. 1140–1166, fev. 2020.
  • E. S. Pinto, L. M. Serra, e A. Lázaro, “Evaluation of methods to select representative days for the optimization of polygeneration systems”, Renew. Energy, vol. 151, p. 488–502, maio 2020.
  • A. Valero et al., “CGAM problem: Definition and conventional solution”, Energy, vol. 19, no 3, p. 279–286, jan. 1994.
  • A. Valero, M. A. Lozano, L. Serra, e C. Torres, “Application of the exergetic cost theory to the CGAM problem”, Energy, vol. 19, no 3, p. 365–381, fev. 1994.
  • G. Tsatsaronis e J. Pisa, “Exergoeconomic evaluation and optimization of energy systems - application to the CGAM problem”, Energy, vol. 19, no 3, p. 287–321, jan. 1994.
  • C. A. Frangopoulos, “Application of the thermoeconomic functional approach to the CGAM problem”, Energy, vol. 19, no 3, p. 323–342, jan. 1994.
  • M. R. von Spakovsky, “Application of engineering functional analysis to the analysis and optimization of the CGAM problem”, Energy, vol. 19, no 3, p. 343–364, jan. 1994.
  • C. Torres, L. Serra, A. Valero, e M. A. Lozano, “The productive structure and thermoeconomic theories of system optimization”, in ME’96: International Mechanical Engineering Congress & Exposition (ASME WAN’96), 1996.
  • B. Erlach, “Comparison of Thermoeconomic Methodologies: Structural Theory, AVCO and LIFO, Application to a Combined Cycle”, University of Zaragoza, 1998.
  • B. Erlach, L. Serra, e A. Valero, “Structural theory as standard for thermoeconomics”, Energy Convers. Manag., vol. 40, no 15–16, p. 1627–1649, jan. 1999.
  • S. M. Seyyedi, H. Ajam, e S. Farahat, “A new criterion for the allocation of residues cost in exergoeconomic analysis of energy systems”, Energy, vol. 35, no 8, p. 3474–3482, ago. 2010.
  • A. Agudelo, A. Valero, e C. Torres, “Allocation of waste cost in thermoeconomic analysis”, Energy, vol. 45, no 1, p. 634–643, set. 2012.
  • J. J. C. S. Santos, M. A. R. Nascimento, e E. E. S. Lora, “On The Thermoeconomic Modeling for Cost Allocation in a Dual-Purpose Power and Desalination Plant”, in ECOS 2006 proceedings of the 19th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2006, p. 441–448.
  • J. J. C. S. Santos, M. A. R. Nascimento, E. E. S. Lora, e A. M. Martínez-Reyes, “On the Negentropy Application in Thermoeconomics: A Fictitious or an Exergy Component Flow?”, Int. J. Thermodyn., vol. 12, no 4, p. 163–176, 2009.
  • M. A. Lozano e A. Valero, “Thermoeconomic analysis of gas turbine cogeneration systems”, ASME, NEW YORK, NY,(USA)., vol. 30, p. 311–320, 1993.
  • L. M. de Avellar, M. A. Barone, D. J. R. Orozco, A. B. Lourenço, J. J. C. S. Santos, e F. R. P. A. Ponce, “Comprehensive Thermoeconomic Diagram for the Thermal System Cost Assessment using Physical and Productive Internal Flows”, in ECOS 2018 Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2018.
  • L. M. de Avellar, M. A. Barone, D. J. R. Orozco, A. B. Lourenço, e J. J. C. S. Santos, “A Comprehensive Thermoeconomic Diagram Based on Both Subsystem Productive Purposes and Physical Connections”, in ENCIT 2018 proceedings of the 7th Brazilian Congress of Thermal Sciences and Engineering, 2018.
  • M. Modesto e S. A. Nebra, “Analysis of a repowering proposal to the power generation system of a steel mill plant through the exergetic cost method”, Energy, vol. 31, no 15, p. 3261–3277, dez. 2006.
  • A. VALERO, “On the thermoeconomic approach to the diagnosis of energy system malfunctions Part 1: the TADEUS problem”, Energy, vol. 29, no 12–15, p. 1875–1887, dez. 2004.
  • L. M. Serra, “Optimización exergoeconómica de Sistemas Térmicos”, Universidad de Zaragoza, Zaragoza, Spain, 1994.
  • R. G. dos Santos, B. Medeiros, P. R. de Faria, J. N. Pretti, A. B. Lourenço, e J. J. C. S. Santos, “As Metodologias Termoeconômicas passados 20 anos do Problema CGAM: unificações e variantes opcionais [in portuguese]”, in Anais do CONEM 2014, 2014.
  • R. G. dos Santos, “Avaliação dos Modelos Termodinâmicos e Abordagem da Alocação de CO2 em Termoeconomia [MSc. dissertation in portuguese]”, Federal University of Espírito Santo (UFES), 2015.
  • C. Torres, “Symbolic thermoeconomic analysis of energy systems”, Encyclopedia of Life Support System (EOLSS), developed under the auspices of the UNESCO. In: Frangopoulos CA, editor. Exergy, energy system analysis and optimization. Oxford: EOLSS Publishers; 2004.
  • J. J. C. S. Santos, M. A. R. Nascimento, E. E. S. Lora, e A. M. Martínez Reyes, “On the Productive Structure for the Residues Cost Allocation in a Gas Turbine Cogeneration Plant”, in ECOS 2008 - Proceedings of the 21st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2008, vol. 2, p. 641–648.
  • X. Luo, J. Hu, J. Zhao, B. Zhang, Y. Chen, e S. Mo, “Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system”, Energy, vol. 72, p. 459–475, ago. 2014.
  • J. J. C. S. Santos, M. A. R. do Nascimento, E. E. S. Lora, J. C. E. Palacio, e J. A. M. da Silva, “On the treatment of dissipative components and residues in thermoeconomic modeling”, in ECOS 2009 proceedings of the 22nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2009.
  • J. A. M. da Silva, J. J. C. S. Santos, e S. de Oliveira Jr., “The condenser product and residues allocation in thermoeconomics”, in Proceedings of Ecos 2010 - The 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2010.
  • S. Keshavarzian, M. V. Rocco, F. Gardumi, e E. Colombo, “Practical approaches for applying thermoeconomic analysis to energy conversion systems: Benchmarking and comparative application”, Energy Convers. Manag., vol. 150, p. 532–544, out. 2017.
  • S. M. Seyyedi, M. Hashemi-Tilehnoee, e M. Khaleghi, “Allocating the residues cost of a typical HTGR directly integrated with steam cycle using distributed entropy method”, Arab J. Nucl. Sci. Appl., vol. 52, no 1, p. 221–233, jan. 2019.
  • S. M. Seyyedi e A. . Dogonchi, “Two New Alternative Options for Residues Cost Distribution Ratio”, J. Appl. Dyn. Syst. Control, vol. Vol 1, p. 28–36, 2018.
  • C. Uysal e H.-Y. Kwak, “Role of Waste Cost in Thermoeconomic Analysis”, Entropy, vol. 22, no 3, p. 289, mar. 2020.
  • S.-M. Kim, S.-D. Oh, Y.-H. Kwon, e H.-Y. Kwak, “Exergoeconomic analysis of thermal systems”, Energy, vol. 23, no 5, p. 393–406, maio 1998.
  • C. Uysal e H.-Y. Kwak, “Role of Waste Cost in Theromeconomic Analysis and Impact of the Waste on Environment”, in Entropy: Theory and New Insights, Vide Leaf, Hyderabad, 2020.
  • L.-M. H. Denise, T.-G. E. Vicente, C.-H. Sergio, S.-P. Martín, L.-A. Teresa, e L.-L. Raúl, “An Irreversibility-Based Criterion to Determine the Cost Formation of Residues in a Three-Pressure-Level Combined Cycle”, Entropy, vol. 22, no 3, p. 299, mar. 2020.
  • L.-M. Helen, C.-H. Sergio, S.-P. Martín, V.-L. Javier, T.-G. E. Vicente, e L.-L. Raúl, “Residue Cost Formation of a High Bypass Turbofan Engine”, Appl. Sci., vol. 10, no 24, p. 9060, dez. 2020.
  • P. R. de Faria, R. G. dos Santos, J. J. C. S. Santos, M. A. Barone, e B. M. F. Miotto, “On the Allocation of Residues Cost in Thermoeconomics using a Comprehensive Diagram”, in ECOS 2020 proceedings of the 33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2020, p. 2444–2456.
  • A. Valero, L. Serra, e J. Uche, “Fundamentals of Exergy Cost Accounting and Thermoeconomics. Part I: Theory”, J. Energy Resour. Technol., vol. 128, no 1, p. 1, 2006.
  • M. A. Lozano e A. Valero, “Theory of the exergetic cost”, Energy, vol. 18, no 9, p. 939–960, set. 1993.
  • Y. M. El-Sayed, The thermoeconomics of energy conversions. Amsterdam ; Boston: Elsevier, 2003.
  • C. A. Frangopoulos, “Thermoeconomic functional analysis: A method for Optimal Design or improvement of Complex Thermal Systems”, Georgia Institute of Technology, 1983.
  • J. J. Pacheco Ibarra, V. H. Rangel Hernández, A. Zaleta Aguilar, e A. Valero, “Hybrid Fuel Impact Reconciliation Method: An integral tool for thermoeconomic diagnosis”, Energy, vol. 35, no 5, p. 2079–2087, maio 2010.
  • D. J. R. Orozco, O. J. Venturini, J. C. Escobar Palacio, e O. A. del Olmo, “A new methodology of thermodynamic diagnosis, using the thermoeconomic method together with an artificial neural network (ANN): A case study of an externally fired gas turbine (EFGT)”, Energy, vol. 123, p. 20–35, mar. 2017.
  • V. H. R. Hernández, “Thermoeconomic Diagnosis of Large Industrial Boilers: Microscopic Representation of the Exergy Cost Theory”, Universidad de Zaragoza, 2005.
  • C. Torres e A. Valero, “A new methodology to compute Exergy Cost Part I: The Flow-Process Table”, in Proceedings of Ecos 2018 - The 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2018.
  • C. Torres e A. Valero, “A new methodology to compute the Exergy Cost Part II: The generalized Irreversibility-Cost formula”, in Proceedings of Ecos 2018 - The 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2018.
  • Y. Wang e N. Lior, “Fuel allocation in a combined steam-injected gas turbine and thermal seawater desalination system”, Desalination, vol. 214, no 1–3, p. 306–326, ago. 2007.
  • J. Uche, “Thermoeconomic Analysis and Simulation of a Combined Power and Desalination Plant [thesis]”, Universidad de Zaragoza, Zaragoza, 2000.

On the Allocation of Residues Cost using Conventional and Comprehensive Thermoeconomic Diagrams

Year 2021, , 134 - 149, 26.05.2021
https://doi.org/10.5541/ijot.878173

Abstract

In a productive process, the achievement of products occurs simultaneously with residues generation. Environmental impact of residues is an important issue in energy systems analysis due to environmental regulations and sustainability assessment. Many waste treatment methodologies have been proposed and applied in thermoeconomics. However, this is a complex problem and the solution depends on the residue nature and its formation process. Most conventional methodologies are based on productive diagrams, using productive flows only, and allocate the residues cost among the productive equipment. This work surveys the main conventional methodologies for treatment of waste and presents an improved/updated methodology based on a comprehensive diagram, in which both physical and productive flows are represented and their flows cost are assessed and the subsystems are connected using the same physical flows presented in the flowsheet of the plant. Both the CGAM system and a combined cycle are analyzed. Comparisons are made with literature results, considering the same case studies. The presented methodology obtains consistent results from the point of view of the cost allocation in thermoeconomics. The novelty of this updated approach concerns how the residue cost is allocated in the comprehensive diagram: it is reinternalized in the internal loop of physical flows, instead of in the productive unit. It represents advantages since the equipment product/fuel ratio index is not affected, which is beneficial for thermoeconomic diagnosis application.

References

  • C. Torres, A. Valero, V. Rangel, e A. Zaleta, “On the cost formation process of the residues”, Energy, vol. 33, no 2, p. 144–152, fev. 2008.
  • C. Torres e A. Valero, “Curso de Doctorado Termoeconomía, Dpto. Ingenieria Mecánica”. Universidad de Zaragoza, 2000.
  • S. A. A. G. Cerqueira, “Metodologias de Análise Termoeconômica de Sistemas [in Portuguese]”, Universidade Estadual de Campinas, Campinas, Brazil, 1999.
  • A. Lazzaretto e G. Tsatsaronis, “SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems”, Energy, vol. 31, no 8–9, p. 1257–1289, jan. 2006.
  • P. A. Arena e R. Borchiellini, “Application of different productive structures for thermoeconomic diagnosis of a combined cycle power plant”, Int. J. Therm. Sci., vol. 38, no 7, p. 601–612, jul. 1999.
  • İ. Dincer e M. A. Rosen, Exergy: Energy, Environment, and Sustainable Development, 1o ed. Elsevier Science, 2007.
  • M. A. Rosen e I. Dincer, “Exergy as the confluence of energy, environment and sustainable development”, Exergy, An Int. J., vol. 1, no 1, p. 3–13, jan. 2001.
  • M. A. Rosen e I. Dincer, “On Exergy and Environmental Impact”, Int. J. Energy Res., vol. 21, no 7, p. 643–654, jun. 1997.
  • H. Holmberg, M. Tuomaala, T. Haikonen, e P. Ahtila, “Allocation of fuel costs and CO2-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill”, Appl. Energy, vol. 93, p. 614–623, maio 2012.
  • J. A. M. Silva, D. Flórez-Orrego, e S. Oliveira, “An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels”, Energy, vol. 67, p. 490–495, abr. 2014.
  • D. Flórez-Orrego, J. A. M. Silva, e S. de Oliveira Jr., “Renewable and non-renewable exergy cost and specific CO2 emission of electricity generation: The Brazilian case”, Energy Convers. Manag., vol. 85, p. 619–629, set. 2014.
  • D. Flórez-Orrego, J. A. M. da Silva, H. Velásquez, e S. de Oliveira, “Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector”, Energy, vol. 88, p. 18–36, ago. 2015.
  • R. G. Santos, P. R. Faria, J. J. C. S. Santos, J. A. M. Silva, e D. Flórez-Orrego, “Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems”, Energy, vol. 117, p. 590–603, jan. 2016.
  • R. G. dos Santos, J. J. C. S. Santos, e J. A. M. da Silva, “Application of Thermoeconomics for CO2 Allocation for Net Power and Useful Heat in a Gas Turbine Cogeneration System”, Appl. Mech. Mater., vol. 830, p. 95–108, mar. 2016.
  • J. A. M. Silva e S. Oliveira, “An exergy-based approach to determine production cost and CO2 allocation in refineries”, Energy, vol. 67, p. 607–616, abr. 2014.
  • D. Flórez-Orrego e S. de Oliveira Junior, “On the efficiency, exergy costs and CO 2 emission cost allocation for an integrated syngas and ammonia production plant”, Energy, vol. 117, p. 341–360, dez. 2016.
  • J. A. M. da Silva e S. de Oliveira Junior, “Unit exergy cost and CO2 emissions of offshore petroleum production”, Energy, vol. 147, p. 757–766, mar. 2018.
  • J. Gao, Q. Zhang, X. Wang, D. Song, W. Liu, e W. Liu, “Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants”, Energy, vol. 152, p. 562–575, jun. 2018.
  • P. S. Ortiz, D. Flórez-Orrego, S. de Oliveira, R. M. Filho, P. Osseweijer, e J. Posada, “Unit exergy cost and specific CO2 emissions of the electricity generation in the Netherlands”, Energy, p. 118279, jul. 2020.
  • R. G. Santos, P. R. Faria, J. J. C. S. Santos, e J. A. M. da Silva, “Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems”, in Proceedings of Ecos 2015 - The 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact ff Energy Systems, 2015.
  • M. Carvalho, E. S. da Silva, S. L. F. Andersen, e R. Abrahão, “Life cycle assessment of the transesterification double step process for biodiesel production from refined soybean oil in Brazil”, Environ. Sci. Pollut. Res., vol. 23, no 11, p. 11025–11033, jun. 2016.
  • J. A. M. da Silva, J. J. C. S. Santos, M. Carvalho, e S. de Oliveira, “On the thermoeconomic and LCA methods for waste and fuel allocation in multiproduct systems”, Energy, vol. 127, p. 775–785, maio 2017.
  • A. F. C. Fortes, M. Carvalho, e J. A. M. da Silva, “Environmental impact and cost allocations for a dual product heat pump”, Energy Convers. Manag., vol. 173, p. 763–772, out. 2018.
  • M. . Rocha, E. E. S. Lora, O. J. Venturini, J. J. C. S. Santos, e A. . Moura, “Use of the life cycle assessment (LCA) for comparison of the environmental performance of four alternatives for the treatment and disposal of bioethanol stillage”, Int. Sugar J., vol. 112, p. 611–622, 2010.
  • M. Carvalho et al., “Alocação em sistemas energéticos multiproduto: revisão e proposta de métodos”, LALCA Rev. Latino-Americana em Avaliação do Ciclo Vida, vol. 4, p. e44660, jul. 2020.
  • E. J. C. Cavalcanti, M. Carvalho, e J. L. B. Azevedo, “Exergoenvironmental results of a eucalyptus biomass-fired power plant”, Energy, vol. 189, p. 116188, dez. 2019.
  • E. J. C. Cavalcanti, M. Carvalho, e D. R. S. da Silva, “Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system”, Energy Convers. Manag., vol. 222, p. 113232, out. 2020.
  • H. Cho, P. J. Mago, R. Luck, e L. M. Chamra, “Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme”, Appl. Energy, vol. 86, no 12, p. 2540–2549, dez. 2009.
  • J.-J. Wang, Y.-Y. Jing, e C.-F. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm”, Appl. Energy, vol. 87, no 4, p. 1325–1335, abr. 2010.
  • S. Bracco, G. Dentici, e S. Siri, “Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area”, Energy, vol. 55, p. 1014–1024, jun. 2013.
  • E. A. Pina, M. A. Lozano, e L. M. Serra, “A multiperiod multiobjective framework for the synthesis of trigeneration systems in tertiary sector buildings”, Int. J. Energy Res., vol. 44, no 2, p. 1140–1166, fev. 2020.
  • E. S. Pinto, L. M. Serra, e A. Lázaro, “Evaluation of methods to select representative days for the optimization of polygeneration systems”, Renew. Energy, vol. 151, p. 488–502, maio 2020.
  • A. Valero et al., “CGAM problem: Definition and conventional solution”, Energy, vol. 19, no 3, p. 279–286, jan. 1994.
  • A. Valero, M. A. Lozano, L. Serra, e C. Torres, “Application of the exergetic cost theory to the CGAM problem”, Energy, vol. 19, no 3, p. 365–381, fev. 1994.
  • G. Tsatsaronis e J. Pisa, “Exergoeconomic evaluation and optimization of energy systems - application to the CGAM problem”, Energy, vol. 19, no 3, p. 287–321, jan. 1994.
  • C. A. Frangopoulos, “Application of the thermoeconomic functional approach to the CGAM problem”, Energy, vol. 19, no 3, p. 323–342, jan. 1994.
  • M. R. von Spakovsky, “Application of engineering functional analysis to the analysis and optimization of the CGAM problem”, Energy, vol. 19, no 3, p. 343–364, jan. 1994.
  • C. Torres, L. Serra, A. Valero, e M. A. Lozano, “The productive structure and thermoeconomic theories of system optimization”, in ME’96: International Mechanical Engineering Congress & Exposition (ASME WAN’96), 1996.
  • B. Erlach, “Comparison of Thermoeconomic Methodologies: Structural Theory, AVCO and LIFO, Application to a Combined Cycle”, University of Zaragoza, 1998.
  • B. Erlach, L. Serra, e A. Valero, “Structural theory as standard for thermoeconomics”, Energy Convers. Manag., vol. 40, no 15–16, p. 1627–1649, jan. 1999.
  • S. M. Seyyedi, H. Ajam, e S. Farahat, “A new criterion for the allocation of residues cost in exergoeconomic analysis of energy systems”, Energy, vol. 35, no 8, p. 3474–3482, ago. 2010.
  • A. Agudelo, A. Valero, e C. Torres, “Allocation of waste cost in thermoeconomic analysis”, Energy, vol. 45, no 1, p. 634–643, set. 2012.
  • J. J. C. S. Santos, M. A. R. Nascimento, e E. E. S. Lora, “On The Thermoeconomic Modeling for Cost Allocation in a Dual-Purpose Power and Desalination Plant”, in ECOS 2006 proceedings of the 19th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2006, p. 441–448.
  • J. J. C. S. Santos, M. A. R. Nascimento, E. E. S. Lora, e A. M. Martínez-Reyes, “On the Negentropy Application in Thermoeconomics: A Fictitious or an Exergy Component Flow?”, Int. J. Thermodyn., vol. 12, no 4, p. 163–176, 2009.
  • M. A. Lozano e A. Valero, “Thermoeconomic analysis of gas turbine cogeneration systems”, ASME, NEW YORK, NY,(USA)., vol. 30, p. 311–320, 1993.
  • L. M. de Avellar, M. A. Barone, D. J. R. Orozco, A. B. Lourenço, J. J. C. S. Santos, e F. R. P. A. Ponce, “Comprehensive Thermoeconomic Diagram for the Thermal System Cost Assessment using Physical and Productive Internal Flows”, in ECOS 2018 Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2018.
  • L. M. de Avellar, M. A. Barone, D. J. R. Orozco, A. B. Lourenço, e J. J. C. S. Santos, “A Comprehensive Thermoeconomic Diagram Based on Both Subsystem Productive Purposes and Physical Connections”, in ENCIT 2018 proceedings of the 7th Brazilian Congress of Thermal Sciences and Engineering, 2018.
  • M. Modesto e S. A. Nebra, “Analysis of a repowering proposal to the power generation system of a steel mill plant through the exergetic cost method”, Energy, vol. 31, no 15, p. 3261–3277, dez. 2006.
  • A. VALERO, “On the thermoeconomic approach to the diagnosis of energy system malfunctions Part 1: the TADEUS problem”, Energy, vol. 29, no 12–15, p. 1875–1887, dez. 2004.
  • L. M. Serra, “Optimización exergoeconómica de Sistemas Térmicos”, Universidad de Zaragoza, Zaragoza, Spain, 1994.
  • R. G. dos Santos, B. Medeiros, P. R. de Faria, J. N. Pretti, A. B. Lourenço, e J. J. C. S. Santos, “As Metodologias Termoeconômicas passados 20 anos do Problema CGAM: unificações e variantes opcionais [in portuguese]”, in Anais do CONEM 2014, 2014.
  • R. G. dos Santos, “Avaliação dos Modelos Termodinâmicos e Abordagem da Alocação de CO2 em Termoeconomia [MSc. dissertation in portuguese]”, Federal University of Espírito Santo (UFES), 2015.
  • C. Torres, “Symbolic thermoeconomic analysis of energy systems”, Encyclopedia of Life Support System (EOLSS), developed under the auspices of the UNESCO. In: Frangopoulos CA, editor. Exergy, energy system analysis and optimization. Oxford: EOLSS Publishers; 2004.
  • J. J. C. S. Santos, M. A. R. Nascimento, E. E. S. Lora, e A. M. Martínez Reyes, “On the Productive Structure for the Residues Cost Allocation in a Gas Turbine Cogeneration Plant”, in ECOS 2008 - Proceedings of the 21st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2008, vol. 2, p. 641–648.
  • X. Luo, J. Hu, J. Zhao, B. Zhang, Y. Chen, e S. Mo, “Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system”, Energy, vol. 72, p. 459–475, ago. 2014.
  • J. J. C. S. Santos, M. A. R. do Nascimento, E. E. S. Lora, J. C. E. Palacio, e J. A. M. da Silva, “On the treatment of dissipative components and residues in thermoeconomic modeling”, in ECOS 2009 proceedings of the 22nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2009.
  • J. A. M. da Silva, J. J. C. S. Santos, e S. de Oliveira Jr., “The condenser product and residues allocation in thermoeconomics”, in Proceedings of Ecos 2010 - The 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2010.
  • S. Keshavarzian, M. V. Rocco, F. Gardumi, e E. Colombo, “Practical approaches for applying thermoeconomic analysis to energy conversion systems: Benchmarking and comparative application”, Energy Convers. Manag., vol. 150, p. 532–544, out. 2017.
  • S. M. Seyyedi, M. Hashemi-Tilehnoee, e M. Khaleghi, “Allocating the residues cost of a typical HTGR directly integrated with steam cycle using distributed entropy method”, Arab J. Nucl. Sci. Appl., vol. 52, no 1, p. 221–233, jan. 2019.
  • S. M. Seyyedi e A. . Dogonchi, “Two New Alternative Options for Residues Cost Distribution Ratio”, J. Appl. Dyn. Syst. Control, vol. Vol 1, p. 28–36, 2018.
  • C. Uysal e H.-Y. Kwak, “Role of Waste Cost in Thermoeconomic Analysis”, Entropy, vol. 22, no 3, p. 289, mar. 2020.
  • S.-M. Kim, S.-D. Oh, Y.-H. Kwon, e H.-Y. Kwak, “Exergoeconomic analysis of thermal systems”, Energy, vol. 23, no 5, p. 393–406, maio 1998.
  • C. Uysal e H.-Y. Kwak, “Role of Waste Cost in Theromeconomic Analysis and Impact of the Waste on Environment”, in Entropy: Theory and New Insights, Vide Leaf, Hyderabad, 2020.
  • L.-M. H. Denise, T.-G. E. Vicente, C.-H. Sergio, S.-P. Martín, L.-A. Teresa, e L.-L. Raúl, “An Irreversibility-Based Criterion to Determine the Cost Formation of Residues in a Three-Pressure-Level Combined Cycle”, Entropy, vol. 22, no 3, p. 299, mar. 2020.
  • L.-M. Helen, C.-H. Sergio, S.-P. Martín, V.-L. Javier, T.-G. E. Vicente, e L.-L. Raúl, “Residue Cost Formation of a High Bypass Turbofan Engine”, Appl. Sci., vol. 10, no 24, p. 9060, dez. 2020.
  • P. R. de Faria, R. G. dos Santos, J. J. C. S. Santos, M. A. Barone, e B. M. F. Miotto, “On the Allocation of Residues Cost in Thermoeconomics using a Comprehensive Diagram”, in ECOS 2020 proceedings of the 33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2020, p. 2444–2456.
  • A. Valero, L. Serra, e J. Uche, “Fundamentals of Exergy Cost Accounting and Thermoeconomics. Part I: Theory”, J. Energy Resour. Technol., vol. 128, no 1, p. 1, 2006.
  • M. A. Lozano e A. Valero, “Theory of the exergetic cost”, Energy, vol. 18, no 9, p. 939–960, set. 1993.
  • Y. M. El-Sayed, The thermoeconomics of energy conversions. Amsterdam ; Boston: Elsevier, 2003.
  • C. A. Frangopoulos, “Thermoeconomic functional analysis: A method for Optimal Design or improvement of Complex Thermal Systems”, Georgia Institute of Technology, 1983.
  • J. J. Pacheco Ibarra, V. H. Rangel Hernández, A. Zaleta Aguilar, e A. Valero, “Hybrid Fuel Impact Reconciliation Method: An integral tool for thermoeconomic diagnosis”, Energy, vol. 35, no 5, p. 2079–2087, maio 2010.
  • D. J. R. Orozco, O. J. Venturini, J. C. Escobar Palacio, e O. A. del Olmo, “A new methodology of thermodynamic diagnosis, using the thermoeconomic method together with an artificial neural network (ANN): A case study of an externally fired gas turbine (EFGT)”, Energy, vol. 123, p. 20–35, mar. 2017.
  • V. H. R. Hernández, “Thermoeconomic Diagnosis of Large Industrial Boilers: Microscopic Representation of the Exergy Cost Theory”, Universidad de Zaragoza, 2005.
  • C. Torres e A. Valero, “A new methodology to compute Exergy Cost Part I: The Flow-Process Table”, in Proceedings of Ecos 2018 - The 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2018.
  • C. Torres e A. Valero, “A new methodology to compute the Exergy Cost Part II: The generalized Irreversibility-Cost formula”, in Proceedings of Ecos 2018 - The 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2018.
  • Y. Wang e N. Lior, “Fuel allocation in a combined steam-injected gas turbine and thermal seawater desalination system”, Desalination, vol. 214, no 1–3, p. 306–326, ago. 2007.
  • J. Uche, “Thermoeconomic Analysis and Simulation of a Combined Power and Desalination Plant [thesis]”, Universidad de Zaragoza, Zaragoza, 2000.
There are 77 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics, Mechanical Engineering
Journal Section Regular Original Research Article
Authors

Pedro Rosseto De Faria 0000-0002-6150-3248

Rodrigo Guedes Dos Santos This is me

José Joaquim Santos This is me 0000-0003-3695-2014

Marcelo Aıolfı Barone This is me 0000-0001-9290-0062

Bruno Muniz Miotto This is me

Publication Date May 26, 2021
Published in Issue Year 2021

Cite

APA Rosseto De Faria, P., Guedes Dos Santos, R., Santos, J. J., Aıolfı Barone, M., et al. (2021). On the Allocation of Residues Cost using Conventional and Comprehensive Thermoeconomic Diagrams. International Journal of Thermodynamics, 24(2), 134-149. https://doi.org/10.5541/ijot.878173
AMA Rosseto De Faria P, Guedes Dos Santos R, Santos JJ, Aıolfı Barone M, Muniz Miotto B. On the Allocation of Residues Cost using Conventional and Comprehensive Thermoeconomic Diagrams. International Journal of Thermodynamics. May 2021;24(2):134-149. doi:10.5541/ijot.878173
Chicago Rosseto De Faria, Pedro, Rodrigo Guedes Dos Santos, José Joaquim Santos, Marcelo Aıolfı Barone, and Bruno Muniz Miotto. “On the Allocation of Residues Cost Using Conventional and Comprehensive Thermoeconomic Diagrams”. International Journal of Thermodynamics 24, no. 2 (May 2021): 134-49. https://doi.org/10.5541/ijot.878173.
EndNote Rosseto De Faria P, Guedes Dos Santos R, Santos JJ, Aıolfı Barone M, Muniz Miotto B (May 1, 2021) On the Allocation of Residues Cost using Conventional and Comprehensive Thermoeconomic Diagrams. International Journal of Thermodynamics 24 2 134–149.
IEEE P. Rosseto De Faria, R. Guedes Dos Santos, J. J. Santos, M. Aıolfı Barone, and B. Muniz Miotto, “On the Allocation of Residues Cost using Conventional and Comprehensive Thermoeconomic Diagrams”, International Journal of Thermodynamics, vol. 24, no. 2, pp. 134–149, 2021, doi: 10.5541/ijot.878173.
ISNAD Rosseto De Faria, Pedro et al. “On the Allocation of Residues Cost Using Conventional and Comprehensive Thermoeconomic Diagrams”. International Journal of Thermodynamics 24/2 (May 2021), 134-149. https://doi.org/10.5541/ijot.878173.
JAMA Rosseto De Faria P, Guedes Dos Santos R, Santos JJ, Aıolfı Barone M, Muniz Miotto B. On the Allocation of Residues Cost using Conventional and Comprehensive Thermoeconomic Diagrams. International Journal of Thermodynamics. 2021;24:134–149.
MLA Rosseto De Faria, Pedro et al. “On the Allocation of Residues Cost Using Conventional and Comprehensive Thermoeconomic Diagrams”. International Journal of Thermodynamics, vol. 24, no. 2, 2021, pp. 134-49, doi:10.5541/ijot.878173.
Vancouver Rosseto De Faria P, Guedes Dos Santos R, Santos JJ, Aıolfı Barone M, Muniz Miotto B. On the Allocation of Residues Cost using Conventional and Comprehensive Thermoeconomic Diagrams. International Journal of Thermodynamics. 2021;24(2):134-49.