Research Article
BibTex RIS Cite

Molecular Dynamics Simulation of CO2 Adsorption and Diffusion in UTSA-16

Year 2021, , 57 - 62, 01.12.2021
https://doi.org/10.5541/ijot.955760
An Erratum to this article was published on December 1, 2021. https://dergipark.org.tr/en/pub/ijot/issue/65944/1122863

Abstract

Molecular dynamics simulation has been employed to calculate the amounts of adsorption and diffusion of CO2 in a type of MOF named UTSA-16. The UTSA-16 has been chosen in this work due to high active water molecules coordinated in its structure which strengthen CO2 interaction and enhances its sorption capacity. Effects of temperatures 298, 313 and 338 K and pressures up to 40 bar on the simulated adsorption properties and also on the diffusion coefficients have been elucidated. To shed light on the mechanism of microscopic phenomena, mean square displacement (MSD) and density profile analyses have been provided and discussed. It has been found that the amount of carbon dioxide adsorption increases with pressure enhancement and temperature reduction. The evaluation of density profile shows the disorder distribution of CO2 molecules through simulation box at lower pressure and their association in the center of the box at higher pressure. The slope of the MSD value increases with increasing pressure and decreasing temperature. As a result, CO2 diffusion coefficient decreases with temperature and increases with pressure.

Thanks

The authors wish to thank the computer facilities provided by Shiraz University of Technology.

References

  • S.D. Kenarsari, D. Yang, G. Jiang, S. Zhang, J. Wang, A.G. Russell, Q. Wei, M. Fan, “Review of Recent Advances in Carbon Dioxide Separation and Capture,” RSC Adv., 3, 22739-22773, 2013.
  • M.L. Parry, Climate Change 2007: Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf
  • D.Y. Leung, G. Caramanna, M.M. Maroto-Valer, “An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies,” Renew. Sust. Energy Rev., 39, 426-443, 2014.
  • R.M. Cuéllar-Franca, A. Azapagic, “Carbon Capture, Storage and Utilization Technologies: A Critical Analysis and Comparison of Their Life Cycle Environmental Impacts,” J. CO2 Util., 9, 82-102, 2015.
  • A, Al-Mamoori, A. Krishnamurthy, A. Rownaghi, F. Rezaei, “Carbon Capture and Utilization Update,” Energy Technol., 5, 34-849, 2015.
  • H. Naims, “Economics of Carbon Dioxide Capture and Utilization-A Supply and Demand Perspective,” Environ. Sci. Pollut. Res., 23, 22226-22241, 2016.
  • U. EIA, Energy Information Administration, US Department of Energy, Washington, DC, 2011. https://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf
  • Q. Zhu, “Developments on CO2-Utilization Technologies,” Clean Energy, 3, 85-100, 2019.
  • Scientific advice mechanism, novel carbon capture and utilization technologies, Brussels, Directorate-General for Research and Innovation, European Commission, 2018. https://ec.europa.eu/research/sam/pdf/sam_ccu_report.pdf
  • G. Cooney, J. Littlefield, J. Marriott, T.J. Skone, “Evaluating the Climate Benefits of CO2-Enhanced Oil Recovery Using Life Cycle Analysis,” Environ. Sci. Technol., 49, 7491-7500, 2015.
  • Z. Dai, R. Middleton, H. Viswanathan, J. Fessenden-Rahn, J. Bauman, R. Pawar, S.Y. Lee, B. McPherson, “An Integrated Framework for Optimizing CO2 Sequestration and Enhanced Oil Recovery,” Environ Sci. Technol. Lett., 1, 49-54, 2014.
  • M. Şakir Ece, S. Kutluay, Ö. Şahin, S. Horoz., “Development of Novel Fe3O4/AC@SiO2@1,4-DAAQ Magnetic Nanoparticles with Outstanding VOC Removal Capacity: Characterization, Optimization, Reusability, Kinetics, and Equilibrium Studies,” Ind. Eng. Chem. Res., 59, 21106-21123, 2020.
  • S. Kutluay, “Excellent Adsorptive Performance of Novel Magnetic Nano-Adsorbent Functionalized with 8-Hydroxyquinoline-5-Sulfonic Acid for the Removal of Volatile Organic Compounds (BTX) Vapors,” Fuel, 287, 119691, 2021.
  • S. Kutluay, O. Baytar, Ö. Şahin, A. Arran, “Synthesis of Magnetic Fe3O4/AC Nanoparticles and Its Application for the Removal of Gas-Phase Toluene by Adsorption Process,” Eur. J. Tech., 10, 131-142, 2020.
  • K.K. Gangu, S. Maddila, S.B. Mukkamala, S.B. Jonnalagadda, “A Review on Contemporary Metal–Organic Framework Materials,” Inorganica Chimica Acta, 446, 61-74, 2016.
  • S. Xiang, X. Wu, J. Zhang, R. Fu, S. Hu, X. Zhang, “A 3D Canted Antiferromagnetic Porous Metal-Organic Framework with Anatase Topology through Assembly of an Analogue of Polyoxometalate,” J. Am. Chem. Soc., 127, 16352-16353, 2005.
  • A. Masala, J.G. Vitillo, F. Bonino, M. Manzoli, C.A. Grande, S. Bordiga, “New Insights into UTSA-16,” Phys. Chem. Chem. Phys., 18, 220-227, 2016.
  • S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna, B. Chen, “Microporous Metal-Organic Framework with Potential for Carbon Dioxide Capture at Ambient Conditions,” Nat. Commun., 3, 954, 2012.
  • V.I. Agueda, J.A. Delgado, M.A. Uguina, P. Brea, A.I. Spjelkavik, R. Blom, C.A. Grande, “Adsorption and Diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 Metal-Organic Framework Extrudates,” Chem. Eng. Sci., 124, 159-169, 2015.
  • C.A. Grande, R. Blom, K.A. Andreassen, R.E. Stensrød, “Experimental Results of Pressure Swing Adsorption (PSA) for Precombustion CO2 Capture with Metal Organic Frameworks,” Energy Procedia, 114, 2265-2270, 2017.
  • C.A. Grande, R. Blom, V. Middelkoop, D. Matras, A. Vamvakeros, S. Jacques, A. Beale, M. Di Michiel, K. Andreassen, A. Bouzga, “Multiscale Investigation of Adsorption Properties of Novel 3D Printed UTSA-16 Structures,” Chem. Eng. J., 402, 126-166, 2020.
  • D. Wu, Q. Yang, C. Zhong, D. Liu, H. Huang, W. Zhang, G. Maurin, “Revealing the Structure-Property Relationships of Metal-Organic Frameworks for CO2 Capture from Flue Gas,” Langmuir, 28, 12094-12099, 2012.
  • E. Haldoupis, S. Nair, D.S. Sholl, “Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials: A Tool for Identifying Materials for Kinetic Separations,” J. Am. Chem. Soc., 134, 4313-4323, 2012.
  • Z. Qiao, K. Zhang, J. Jiang, “In Silico Screening of 4764 Computation-ready, Experimental Metal Organic Frameworks for CO2 Separation,” J. Mater. Chem. A, 4, 2105-2114, 2016.
  • C. Altintas, G. Avci, H. Daglar, A. Nemati Vesali, S. Velioglu, I. Erucar, S. Keskin, “Database for CO2 Separation Performances of MOFs Based on Computational Materials Screening,” ACS Appl. Mater. Interfaces, 10, 17257-17268, 2018.
  • C. Altintas, S. Keskin, “Molecular Simulations of MOF Membranes and Performance Predictions of MOF/Polymer Mixed Matrix Membranes for CO2/CH4 Separations,” ACS Sustain. Chem. Eng., 7, 2739-2750, 2019.
  • T.D. Burns, K.N. Pai, S.G. Subraveti, S.P. Collins, M. Krykunov, A. Rajendran, T.K. Woo, “Prediction of MOF Performance in Vacuum Swing Adsorption Systems for Postcombustion CO2 Capture Based on Integrated Molecular Simulations, Process Optimizations, and Machine Learning Models,” Environ. Sci. Technol., 54, 4536-4544, 2020.
  • H.J.C. Berendsen, D. van der Spoel, R. van Drunen, “GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation,” Comput. Phys. Commun., 91, 43-56, 1995.
  • E. Lindahl, B. Hess, D. Van Der Spoel, “GROMACS 3.0: A Package for Molecular Simulation and Trajectory Analysis,” J. Mol. Model., 7, 306-317, 2001.
  • http://prodrg2.dyndns.org/submit.html [Access Date: ]
  • S. Keskin S “Gas Adsorption and Diffusion in a Highly CO2 Selective Metal-Organic Framework: Molecular Simulations,” Molecular Simulation, 39, 14-24, 2013.
  • C. Oostenbrink, A. Villa, A.E. Mark, W.F. Van Gunsteren, “A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: the GROMOS Force-Field Parameter Sets 53A5 and 53A6,” J. Comput. Chem. 25, 1656-1676, 2004.
  • J. Zhang, K. Liu, M.B. Clennell, D.N. Dewhurst, M. Pervukhina, “Molecular Simulation of CO2-CH4 Competitive Adsorption and Induced Coal Swelling,” Fuel, 160, 309-317, 2015.
  • Y. Bai, H. Sui, X. Liu, L. He, X. Li, E. Thormann, “Effects of the N, O, and S Heteroatoms on the Aadsorption and Desorption of Asphaltenes on Silica Surface: A Molecular Dynamics Simulation,” Fuel, 240, 252-261, 2019.
  • M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, New York: Oxford university press, 2017.
  • T. Darden, D. York, L. Pedersen, “Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems,” J. Chem. Phys., 98, 10089-10092, 1993.
  • H.J. Berendsen, J.V. Postma, W.F. van Gunsteren, A. DiNola, J. Haak, “Molecular Dynamics with Coupling to an External Bath,” J. Chem. Phys., 81, 3684-3690, 1984.
  • J. Kärger, D.M. Ruthven, Diffusion in Zeolites and other Microporous Solids, New York: John Wiley, 1992.
  • F.J. Keil, R. Krishna, M.O. Coppens, “Modeling of Diffusion in Zeolites,” Rev. Chem. Eng., 16, 71-197, 2000.
  • X. Tang, N. Ripepi, “High Pressure Supercritical Carbon Dioxide Adsorption in Coal: Adsorption Model and Thermodynamic Characteristics,” J. CO2 Util., 18, 189-197, 2017.
  • M. Xu, H.C. Wu, Y.S. Lin, S. Deng, “Simulation and Optimization of Pressure Swing Adsorption Process for High Temperature Air Separation by Perovskite Sorbents,” Chem. Eng. J., 354, 62-74, 2018.
  • J. Kärger, H. Pfeifer, “N.m.r. Self-Diffusion Studies in Zeolite Science and Technology,” Zeolites, 7, 90-107, 1987.
Year 2021, , 57 - 62, 01.12.2021
https://doi.org/10.5541/ijot.955760
An Erratum to this article was published on December 1, 2021. https://dergipark.org.tr/en/pub/ijot/issue/65944/1122863

Abstract

References

  • S.D. Kenarsari, D. Yang, G. Jiang, S. Zhang, J. Wang, A.G. Russell, Q. Wei, M. Fan, “Review of Recent Advances in Carbon Dioxide Separation and Capture,” RSC Adv., 3, 22739-22773, 2013.
  • M.L. Parry, Climate Change 2007: Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf
  • D.Y. Leung, G. Caramanna, M.M. Maroto-Valer, “An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies,” Renew. Sust. Energy Rev., 39, 426-443, 2014.
  • R.M. Cuéllar-Franca, A. Azapagic, “Carbon Capture, Storage and Utilization Technologies: A Critical Analysis and Comparison of Their Life Cycle Environmental Impacts,” J. CO2 Util., 9, 82-102, 2015.
  • A, Al-Mamoori, A. Krishnamurthy, A. Rownaghi, F. Rezaei, “Carbon Capture and Utilization Update,” Energy Technol., 5, 34-849, 2015.
  • H. Naims, “Economics of Carbon Dioxide Capture and Utilization-A Supply and Demand Perspective,” Environ. Sci. Pollut. Res., 23, 22226-22241, 2016.
  • U. EIA, Energy Information Administration, US Department of Energy, Washington, DC, 2011. https://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf
  • Q. Zhu, “Developments on CO2-Utilization Technologies,” Clean Energy, 3, 85-100, 2019.
  • Scientific advice mechanism, novel carbon capture and utilization technologies, Brussels, Directorate-General for Research and Innovation, European Commission, 2018. https://ec.europa.eu/research/sam/pdf/sam_ccu_report.pdf
  • G. Cooney, J. Littlefield, J. Marriott, T.J. Skone, “Evaluating the Climate Benefits of CO2-Enhanced Oil Recovery Using Life Cycle Analysis,” Environ. Sci. Technol., 49, 7491-7500, 2015.
  • Z. Dai, R. Middleton, H. Viswanathan, J. Fessenden-Rahn, J. Bauman, R. Pawar, S.Y. Lee, B. McPherson, “An Integrated Framework for Optimizing CO2 Sequestration and Enhanced Oil Recovery,” Environ Sci. Technol. Lett., 1, 49-54, 2014.
  • M. Şakir Ece, S. Kutluay, Ö. Şahin, S. Horoz., “Development of Novel Fe3O4/AC@SiO2@1,4-DAAQ Magnetic Nanoparticles with Outstanding VOC Removal Capacity: Characterization, Optimization, Reusability, Kinetics, and Equilibrium Studies,” Ind. Eng. Chem. Res., 59, 21106-21123, 2020.
  • S. Kutluay, “Excellent Adsorptive Performance of Novel Magnetic Nano-Adsorbent Functionalized with 8-Hydroxyquinoline-5-Sulfonic Acid for the Removal of Volatile Organic Compounds (BTX) Vapors,” Fuel, 287, 119691, 2021.
  • S. Kutluay, O. Baytar, Ö. Şahin, A. Arran, “Synthesis of Magnetic Fe3O4/AC Nanoparticles and Its Application for the Removal of Gas-Phase Toluene by Adsorption Process,” Eur. J. Tech., 10, 131-142, 2020.
  • K.K. Gangu, S. Maddila, S.B. Mukkamala, S.B. Jonnalagadda, “A Review on Contemporary Metal–Organic Framework Materials,” Inorganica Chimica Acta, 446, 61-74, 2016.
  • S. Xiang, X. Wu, J. Zhang, R. Fu, S. Hu, X. Zhang, “A 3D Canted Antiferromagnetic Porous Metal-Organic Framework with Anatase Topology through Assembly of an Analogue of Polyoxometalate,” J. Am. Chem. Soc., 127, 16352-16353, 2005.
  • A. Masala, J.G. Vitillo, F. Bonino, M. Manzoli, C.A. Grande, S. Bordiga, “New Insights into UTSA-16,” Phys. Chem. Chem. Phys., 18, 220-227, 2016.
  • S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna, B. Chen, “Microporous Metal-Organic Framework with Potential for Carbon Dioxide Capture at Ambient Conditions,” Nat. Commun., 3, 954, 2012.
  • V.I. Agueda, J.A. Delgado, M.A. Uguina, P. Brea, A.I. Spjelkavik, R. Blom, C.A. Grande, “Adsorption and Diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 Metal-Organic Framework Extrudates,” Chem. Eng. Sci., 124, 159-169, 2015.
  • C.A. Grande, R. Blom, K.A. Andreassen, R.E. Stensrød, “Experimental Results of Pressure Swing Adsorption (PSA) for Precombustion CO2 Capture with Metal Organic Frameworks,” Energy Procedia, 114, 2265-2270, 2017.
  • C.A. Grande, R. Blom, V. Middelkoop, D. Matras, A. Vamvakeros, S. Jacques, A. Beale, M. Di Michiel, K. Andreassen, A. Bouzga, “Multiscale Investigation of Adsorption Properties of Novel 3D Printed UTSA-16 Structures,” Chem. Eng. J., 402, 126-166, 2020.
  • D. Wu, Q. Yang, C. Zhong, D. Liu, H. Huang, W. Zhang, G. Maurin, “Revealing the Structure-Property Relationships of Metal-Organic Frameworks for CO2 Capture from Flue Gas,” Langmuir, 28, 12094-12099, 2012.
  • E. Haldoupis, S. Nair, D.S. Sholl, “Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials: A Tool for Identifying Materials for Kinetic Separations,” J. Am. Chem. Soc., 134, 4313-4323, 2012.
  • Z. Qiao, K. Zhang, J. Jiang, “In Silico Screening of 4764 Computation-ready, Experimental Metal Organic Frameworks for CO2 Separation,” J. Mater. Chem. A, 4, 2105-2114, 2016.
  • C. Altintas, G. Avci, H. Daglar, A. Nemati Vesali, S. Velioglu, I. Erucar, S. Keskin, “Database for CO2 Separation Performances of MOFs Based on Computational Materials Screening,” ACS Appl. Mater. Interfaces, 10, 17257-17268, 2018.
  • C. Altintas, S. Keskin, “Molecular Simulations of MOF Membranes and Performance Predictions of MOF/Polymer Mixed Matrix Membranes for CO2/CH4 Separations,” ACS Sustain. Chem. Eng., 7, 2739-2750, 2019.
  • T.D. Burns, K.N. Pai, S.G. Subraveti, S.P. Collins, M. Krykunov, A. Rajendran, T.K. Woo, “Prediction of MOF Performance in Vacuum Swing Adsorption Systems for Postcombustion CO2 Capture Based on Integrated Molecular Simulations, Process Optimizations, and Machine Learning Models,” Environ. Sci. Technol., 54, 4536-4544, 2020.
  • H.J.C. Berendsen, D. van der Spoel, R. van Drunen, “GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation,” Comput. Phys. Commun., 91, 43-56, 1995.
  • E. Lindahl, B. Hess, D. Van Der Spoel, “GROMACS 3.0: A Package for Molecular Simulation and Trajectory Analysis,” J. Mol. Model., 7, 306-317, 2001.
  • http://prodrg2.dyndns.org/submit.html [Access Date: ]
  • S. Keskin S “Gas Adsorption and Diffusion in a Highly CO2 Selective Metal-Organic Framework: Molecular Simulations,” Molecular Simulation, 39, 14-24, 2013.
  • C. Oostenbrink, A. Villa, A.E. Mark, W.F. Van Gunsteren, “A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: the GROMOS Force-Field Parameter Sets 53A5 and 53A6,” J. Comput. Chem. 25, 1656-1676, 2004.
  • J. Zhang, K. Liu, M.B. Clennell, D.N. Dewhurst, M. Pervukhina, “Molecular Simulation of CO2-CH4 Competitive Adsorption and Induced Coal Swelling,” Fuel, 160, 309-317, 2015.
  • Y. Bai, H. Sui, X. Liu, L. He, X. Li, E. Thormann, “Effects of the N, O, and S Heteroatoms on the Aadsorption and Desorption of Asphaltenes on Silica Surface: A Molecular Dynamics Simulation,” Fuel, 240, 252-261, 2019.
  • M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, New York: Oxford university press, 2017.
  • T. Darden, D. York, L. Pedersen, “Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems,” J. Chem. Phys., 98, 10089-10092, 1993.
  • H.J. Berendsen, J.V. Postma, W.F. van Gunsteren, A. DiNola, J. Haak, “Molecular Dynamics with Coupling to an External Bath,” J. Chem. Phys., 81, 3684-3690, 1984.
  • J. Kärger, D.M. Ruthven, Diffusion in Zeolites and other Microporous Solids, New York: John Wiley, 1992.
  • F.J. Keil, R. Krishna, M.O. Coppens, “Modeling of Diffusion in Zeolites,” Rev. Chem. Eng., 16, 71-197, 2000.
  • X. Tang, N. Ripepi, “High Pressure Supercritical Carbon Dioxide Adsorption in Coal: Adsorption Model and Thermodynamic Characteristics,” J. CO2 Util., 18, 189-197, 2017.
  • M. Xu, H.C. Wu, Y.S. Lin, S. Deng, “Simulation and Optimization of Pressure Swing Adsorption Process for High Temperature Air Separation by Perovskite Sorbents,” Chem. Eng. J., 354, 62-74, 2018.
  • J. Kärger, H. Pfeifer, “N.m.r. Self-Diffusion Studies in Zeolite Science and Technology,” Zeolites, 7, 90-107, 1987.
There are 42 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Regular Original Research Article
Authors

Hossein Ghaseminejad This is me

Fatemeh Sabzi

Publication Date December 1, 2021
Published in Issue Year 2021

Cite

APA Ghaseminejad, H., & Sabzi, F. (2021). Molecular Dynamics Simulation of CO2 Adsorption and Diffusion in UTSA-16. International Journal of Thermodynamics, 24(4), 57-62. https://doi.org/10.5541/ijot.955760
AMA Ghaseminejad H, Sabzi F. Molecular Dynamics Simulation of CO2 Adsorption and Diffusion in UTSA-16. International Journal of Thermodynamics. December 2021;24(4):57-62. doi:10.5541/ijot.955760
Chicago Ghaseminejad, Hossein, and Fatemeh Sabzi. “Molecular Dynamics Simulation of CO2 Adsorption and Diffusion in UTSA-16”. International Journal of Thermodynamics 24, no. 4 (December 2021): 57-62. https://doi.org/10.5541/ijot.955760.
EndNote Ghaseminejad H, Sabzi F (December 1, 2021) Molecular Dynamics Simulation of CO2 Adsorption and Diffusion in UTSA-16. International Journal of Thermodynamics 24 4 57–62.
IEEE H. Ghaseminejad and F. Sabzi, “Molecular Dynamics Simulation of CO2 Adsorption and Diffusion in UTSA-16”, International Journal of Thermodynamics, vol. 24, no. 4, pp. 57–62, 2021, doi: 10.5541/ijot.955760.
ISNAD Ghaseminejad, Hossein - Sabzi, Fatemeh. “Molecular Dynamics Simulation of CO2 Adsorption and Diffusion in UTSA-16”. International Journal of Thermodynamics 24/4 (December 2021), 57-62. https://doi.org/10.5541/ijot.955760.
JAMA Ghaseminejad H, Sabzi F. Molecular Dynamics Simulation of CO2 Adsorption and Diffusion in UTSA-16. International Journal of Thermodynamics. 2021;24:57–62.
MLA Ghaseminejad, Hossein and Fatemeh Sabzi. “Molecular Dynamics Simulation of CO2 Adsorption and Diffusion in UTSA-16”. International Journal of Thermodynamics, vol. 24, no. 4, 2021, pp. 57-62, doi:10.5541/ijot.955760.
Vancouver Ghaseminejad H, Sabzi F. Molecular Dynamics Simulation of CO2 Adsorption and Diffusion in UTSA-16. International Journal of Thermodynamics. 2021;24(4):57-62.