Research Article
BibTex RIS Cite
Year 2018, Volume: 21 Issue: 2, 70 - 80, 30.05.2018
https://doi.org/10.5541/ijot.303607

Abstract

References

  • N. V. Plechkova, K. R. Seddon, “Applications of ionic liquids in the chemical industry,” Chem. Soc. Rev., 37, 123-150, 2008.
  • T. L. Greaves, C. J. Drummond, “Protic ionic liquids: Properties and applications,” Chem. Rev., 108, 206-237, 2008.
  • R. Feng, D. Zhao, Y. Guo, “Revisiting characteristics of ionic liquids: A review for further application development,” J. Environ. Prot., 1, 95-104, 2010.
  • J. P. Hallett, T. Welton, “Room-temperature ionic liquids: Solvents for synthesis and catalysis 2,” Chem. Rev., 111, 3508-3576, 2011.
  • G. Khashavar, “A review of ionic liquids, their limits and applications,” Green and sustainable chemistry, 4, 044-053, 2014.
  • A. R. Hajipour, F. Rafiee, “Recent progress in ionic liquids and their applications in organic synthesis,” Org. Prep. Proced. Int., 47, 001-060, 2015.
  • T. L. Greaves, C. J. Drummond, “Protic Ionic Liquids: Evolving Structure–Property Relationships and Expanding Applications,” Chem. Rev., 115, 11379-11448, 2015.
  • D. Zhao, Y. Liao, Z.D. Zhang, “Toxicity of ionic liquids,” Clean-Soil Air Water, 35, 042-048, 2007.
  • S. Zhu, R. Chen, Y. Wu, Q. Chen, X. Zhang, Z. Yu, “A mini-review on greenness of ionic liquids,” Chem. Biochem. Eng. Q. 23, 207-211, 2009.
  • B. Peric, E. Martí, J. Sierra, R. Cruañas, M. Iglesias, M. A. Garau, “Terrestrial ecotoxicity of short aliphatic protic ionic liquids,” Environ. Toxicol. Chem., 30, 2802-2809, 2011.
  • B. Peric, J. Sierra, E. Martí, U. Bottin-Weber, S. Stolte, “(Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids,” J. Hazard. Mater., 261, 099-105, 2013.
  • B. Peric, J. Siera, E. Martí, R. Cruañas, M. A. Garau, “A comparative study of the terrestrial ecotoxicity of selected protic and aprotic ionic liquids,” Chemosphere. 108, 418-425, 2014.
  • I. Cota, R. Gonzalez-Olmos, M. Iglesias, F. Medina, “New short aliphatic chain ionic liquids: Synthesis, physical properties, and catalytic activity in aldol condensations,” J. Phys. Chem. B. 111, 12468-12477, 2007.
  • M. Iglesias, A. Torres, R. Gonzalez-Olmos, D. Salvatierra, “Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents},” J. Chem. Thermodyn. 40, 119-133, 2008.
  • V. H. Álvarez, S. Mattedi, M. Martin-Pastor, M. Aznar, M. Iglesias, “Synthesis and thermophysical properties of two new protic long-chain ionic liquids with the oleate anion,” Fluid Phase Equilib. 299, 354-366, 2010.
  • V. H. Álvarez, N. Dosil, R. Gonzalez-Cabaleiro, S. Mattedi, M. Martin-Pastor, M. Iglesias, J. M. Navaza, “Brønsted ionic liquids for sustainable processes: Synthesis and physical properties,” J. Chem. Eng. Data. 55, 625–632, 2010.
  • M. Iglesias, R, Gonzalez-Olmos, I. Cota, F. Medina, “Brønsted ionic liquids: study of physico-chemical properties and catalytic activity in aldol condensations,” Chem. Eng. J., 162, 802-808, 2010.
  • V. H. Alvarez, S. Mattedi, M. Martin-Pastor, M. Aznar, M. Iglesias, Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)},” J. Chem. Thermodyn. 43, 997-1010, 2011.
  • I. Cota, F. Medina, R. Gonzalez-Olmos, M. Iglesias, “Alanine-supported protic ionic liquids as efficient catalysts for aldol condensation reactions,” C. R. Chim., 17, 018-022, 2014.
  • T. Espinosa, M. Jimenez, J. Sanes, A. E. Jimenez, M. Iglesias, M. D. Bermudez, “Low friction with a protic ionic liquid boundary film at the water-lubricated sapphire–stainless steel interface,” Tribol. Lett., 53, 001-009, 2014.
  • J. Kulhavy, R. S. Andrade, S. M. Barros, J. S. Serra, M. Iglesias, “Influence of temperature on thermodynamics of protic ionic liquid 2-hydroxy diethylammonium dilactate (2-HDEAL) + short hydroxylic solvents,” J. Mol. Liq., 213, 092-106, 2016.
  • C. Ravazzano, K. Lima, R. S. Andrade, M. Iglesias, “Volumetric and acoustic study of a short protic ionic liquids binary mixture: 2-Hydroxy ethyl ammonium formate (2-HEAF) + 2-Hydroxy diethyl ammonium acetate (2-HDEAA),” Int. J. of Thermo., 19(4), 244-250, 2016.
  • Kh. Nasrifar, Sh. Avatollahi, M. Moshfeghian, “An extended saturated liquid density equation,” Fluid Phase Equilib. 166, 163-181, 1999.
  • A. Mchaweh, A. Alsaygh, Kh. Nasrifar, M. Moshfeghian, “A simplified method for calculating saturated liquid densities,” Fluid Phase Equilib. 224, 157-167, 2004.
  • M. Iglesias, B. Orge, M. Domínguez, J. Tojo, “Mixing properties of the binary mixtures of acetone, methanol, ethanol, and 2-butanone at 298.15 K,” Phys. Chem. Liq., 37, 009-029, 1998.
  • C. Gonzalez, M. Iglesias, J. Lanz, G. Marino, B. Orge, J.M. Resa, “Temperature influence on refractive indices and isentropic compressibilities of alcohol (C2-C4)+olive oil mixtures”, J. Food Eng., 50, 29-40, 2001.
  • J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic solvents, Physical properties and methods of purification, 4th ed. New York: Wiley-Interscience, 1997.
  • TRC Thermodynamic Tables (Thermodynamic Research Center, Texas A&M University: College Station, TX, 1994).
  • G. S. Kell, “Density, thermal expansivity, and compressibility of liquid water from 0.deg. to 150.deg.: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale”, J. Chem. Eng. Data, 20, 97-105, 1975.
  • V. A. Del Grosso, C. W. Mader, “Speed of sound in pure water,” J. Acoustical Soc. American, 52, 1442, 1972.
  • J. M. Resa, C. Gonzalez, J. M. Goenaga, “Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor−Liquid Equilibria at 101.3 kPa for Binary Mixtures of Propanol + 2-Methyl-1-butanol and Propanol + 3-Methyl-1-butanol,” J. Chem. Eng. Data, 50, 1570-1575, 2005.
  • H. Iloukhani, B. Samiey, M. A. Moghaddasi, “Speeds of sound, isentropic compressibilities, viscosities and excess molar volumes of binary mixtures of methylcyclohexane + 2-alkanols or ethanol at T = 298.15 K,” J. Chem. Thermodyn. 38, 190–200, 2006.
  • J. O. Valderrama, P. A. Robles, “Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids,” Ind. Eng. Chem. Res. 46, 1338-1344, 2007.
  • R.L. Rowley, W.V. Wilding, J.L. Oscarson, Y. Yang, N.F. Giles, DIPPR Data Compilation of Pure Chemical Properties (Design Institute for Physical Properites, AIChE, New York, 2009).
  • M. Iglesias, R. S. Andrade, A. V. P. Xavier, “Modelling and experimental thermodynamic data of hydroxylic compounds”, Monatsh. Chem. 00, 0000-0000, 2017. Submitted for publication.
  • M. Iglesias, R.S. Andrade, C. González, Effect of temperature on thermodynamic properties of new protic ionic liquids, Phys. Chem. Liq. 00, 0000-0000. 2017. Submitted for publication.

Effect of temperature on thermodynamic properties of protic ionic liquids: 2-hydroxy ethylammonium lactate (2-HEAL) + short hydroxylic solvent

Year 2018, Volume: 21 Issue: 2, 70 - 80, 30.05.2018
https://doi.org/10.5541/ijot.303607

Abstract

In this study, we have synthesized the
protic ionic liquid 2-hydroxy ethylammonium lactate
(2-HEAL), and investigated its volumetric and acoustic behaviour into
different hydroxylic media (water, methanol and ethanol) at the temperature
288.15-323.15 K and atmospheric pressure. Total solubility of the ionic liquid
into these solvents was observed at this range of temperature. Apparent molar volume and apparent molar isentropic
compressibility values have been computed from the experimental data and fitted
to a temperature dependent Redlich-Mayer equation. From these
correlations, the limiting infinite dilution values of the apparent magnitudes
have also been computed. Derived magnitudes such as isobaric expansibility and
isothermal coefficient of pressure excess molar enthalpy were computed due to
their importance in the study of specific molecular interactions among the ions
and covalent molecules enclosed into mixtures. The measured experimental data
were used to test the accuracy of prediction of different models
(Mchaweh-Nasrifar–Moshfeghian model (MNM model) and the modified Heller
temperature dependent equation (MHE) for density and Collision Factor Theory
(CFT) for ultrasonic velocity). The obtained results
indicate that ionic liquid interactions in water are weaker than in the
studied alcoholic solutions, as previously observed in analogous protic ionic
liquids. 

References

  • N. V. Plechkova, K. R. Seddon, “Applications of ionic liquids in the chemical industry,” Chem. Soc. Rev., 37, 123-150, 2008.
  • T. L. Greaves, C. J. Drummond, “Protic ionic liquids: Properties and applications,” Chem. Rev., 108, 206-237, 2008.
  • R. Feng, D. Zhao, Y. Guo, “Revisiting characteristics of ionic liquids: A review for further application development,” J. Environ. Prot., 1, 95-104, 2010.
  • J. P. Hallett, T. Welton, “Room-temperature ionic liquids: Solvents for synthesis and catalysis 2,” Chem. Rev., 111, 3508-3576, 2011.
  • G. Khashavar, “A review of ionic liquids, their limits and applications,” Green and sustainable chemistry, 4, 044-053, 2014.
  • A. R. Hajipour, F. Rafiee, “Recent progress in ionic liquids and their applications in organic synthesis,” Org. Prep. Proced. Int., 47, 001-060, 2015.
  • T. L. Greaves, C. J. Drummond, “Protic Ionic Liquids: Evolving Structure–Property Relationships and Expanding Applications,” Chem. Rev., 115, 11379-11448, 2015.
  • D. Zhao, Y. Liao, Z.D. Zhang, “Toxicity of ionic liquids,” Clean-Soil Air Water, 35, 042-048, 2007.
  • S. Zhu, R. Chen, Y. Wu, Q. Chen, X. Zhang, Z. Yu, “A mini-review on greenness of ionic liquids,” Chem. Biochem. Eng. Q. 23, 207-211, 2009.
  • B. Peric, E. Martí, J. Sierra, R. Cruañas, M. Iglesias, M. A. Garau, “Terrestrial ecotoxicity of short aliphatic protic ionic liquids,” Environ. Toxicol. Chem., 30, 2802-2809, 2011.
  • B. Peric, J. Sierra, E. Martí, U. Bottin-Weber, S. Stolte, “(Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids,” J. Hazard. Mater., 261, 099-105, 2013.
  • B. Peric, J. Siera, E. Martí, R. Cruañas, M. A. Garau, “A comparative study of the terrestrial ecotoxicity of selected protic and aprotic ionic liquids,” Chemosphere. 108, 418-425, 2014.
  • I. Cota, R. Gonzalez-Olmos, M. Iglesias, F. Medina, “New short aliphatic chain ionic liquids: Synthesis, physical properties, and catalytic activity in aldol condensations,” J. Phys. Chem. B. 111, 12468-12477, 2007.
  • M. Iglesias, A. Torres, R. Gonzalez-Olmos, D. Salvatierra, “Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents},” J. Chem. Thermodyn. 40, 119-133, 2008.
  • V. H. Álvarez, S. Mattedi, M. Martin-Pastor, M. Aznar, M. Iglesias, “Synthesis and thermophysical properties of two new protic long-chain ionic liquids with the oleate anion,” Fluid Phase Equilib. 299, 354-366, 2010.
  • V. H. Álvarez, N. Dosil, R. Gonzalez-Cabaleiro, S. Mattedi, M. Martin-Pastor, M. Iglesias, J. M. Navaza, “Brønsted ionic liquids for sustainable processes: Synthesis and physical properties,” J. Chem. Eng. Data. 55, 625–632, 2010.
  • M. Iglesias, R, Gonzalez-Olmos, I. Cota, F. Medina, “Brønsted ionic liquids: study of physico-chemical properties and catalytic activity in aldol condensations,” Chem. Eng. J., 162, 802-808, 2010.
  • V. H. Alvarez, S. Mattedi, M. Martin-Pastor, M. Aznar, M. Iglesias, Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)},” J. Chem. Thermodyn. 43, 997-1010, 2011.
  • I. Cota, F. Medina, R. Gonzalez-Olmos, M. Iglesias, “Alanine-supported protic ionic liquids as efficient catalysts for aldol condensation reactions,” C. R. Chim., 17, 018-022, 2014.
  • T. Espinosa, M. Jimenez, J. Sanes, A. E. Jimenez, M. Iglesias, M. D. Bermudez, “Low friction with a protic ionic liquid boundary film at the water-lubricated sapphire–stainless steel interface,” Tribol. Lett., 53, 001-009, 2014.
  • J. Kulhavy, R. S. Andrade, S. M. Barros, J. S. Serra, M. Iglesias, “Influence of temperature on thermodynamics of protic ionic liquid 2-hydroxy diethylammonium dilactate (2-HDEAL) + short hydroxylic solvents,” J. Mol. Liq., 213, 092-106, 2016.
  • C. Ravazzano, K. Lima, R. S. Andrade, M. Iglesias, “Volumetric and acoustic study of a short protic ionic liquids binary mixture: 2-Hydroxy ethyl ammonium formate (2-HEAF) + 2-Hydroxy diethyl ammonium acetate (2-HDEAA),” Int. J. of Thermo., 19(4), 244-250, 2016.
  • Kh. Nasrifar, Sh. Avatollahi, M. Moshfeghian, “An extended saturated liquid density equation,” Fluid Phase Equilib. 166, 163-181, 1999.
  • A. Mchaweh, A. Alsaygh, Kh. Nasrifar, M. Moshfeghian, “A simplified method for calculating saturated liquid densities,” Fluid Phase Equilib. 224, 157-167, 2004.
  • M. Iglesias, B. Orge, M. Domínguez, J. Tojo, “Mixing properties of the binary mixtures of acetone, methanol, ethanol, and 2-butanone at 298.15 K,” Phys. Chem. Liq., 37, 009-029, 1998.
  • C. Gonzalez, M. Iglesias, J. Lanz, G. Marino, B. Orge, J.M. Resa, “Temperature influence on refractive indices and isentropic compressibilities of alcohol (C2-C4)+olive oil mixtures”, J. Food Eng., 50, 29-40, 2001.
  • J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic solvents, Physical properties and methods of purification, 4th ed. New York: Wiley-Interscience, 1997.
  • TRC Thermodynamic Tables (Thermodynamic Research Center, Texas A&M University: College Station, TX, 1994).
  • G. S. Kell, “Density, thermal expansivity, and compressibility of liquid water from 0.deg. to 150.deg.: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale”, J. Chem. Eng. Data, 20, 97-105, 1975.
  • V. A. Del Grosso, C. W. Mader, “Speed of sound in pure water,” J. Acoustical Soc. American, 52, 1442, 1972.
  • J. M. Resa, C. Gonzalez, J. M. Goenaga, “Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor−Liquid Equilibria at 101.3 kPa for Binary Mixtures of Propanol + 2-Methyl-1-butanol and Propanol + 3-Methyl-1-butanol,” J. Chem. Eng. Data, 50, 1570-1575, 2005.
  • H. Iloukhani, B. Samiey, M. A. Moghaddasi, “Speeds of sound, isentropic compressibilities, viscosities and excess molar volumes of binary mixtures of methylcyclohexane + 2-alkanols or ethanol at T = 298.15 K,” J. Chem. Thermodyn. 38, 190–200, 2006.
  • J. O. Valderrama, P. A. Robles, “Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids,” Ind. Eng. Chem. Res. 46, 1338-1344, 2007.
  • R.L. Rowley, W.V. Wilding, J.L. Oscarson, Y. Yang, N.F. Giles, DIPPR Data Compilation of Pure Chemical Properties (Design Institute for Physical Properites, AIChE, New York, 2009).
  • M. Iglesias, R. S. Andrade, A. V. P. Xavier, “Modelling and experimental thermodynamic data of hydroxylic compounds”, Monatsh. Chem. 00, 0000-0000, 2017. Submitted for publication.
  • M. Iglesias, R.S. Andrade, C. González, Effect of temperature on thermodynamic properties of new protic ionic liquids, Phys. Chem. Liq. 00, 0000-0000. 2017. Submitted for publication.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Regular Original Research Article
Authors

Safira Barros This is me

Rebecca S. Andrade This is me

Miguel Iglesias

Publication Date May 30, 2018
Published in Issue Year 2018 Volume: 21 Issue: 2

Cite

APA Barros, S., S. Andrade, R., & Iglesias, M. (2018). Effect of temperature on thermodynamic properties of protic ionic liquids: 2-hydroxy ethylammonium lactate (2-HEAL) + short hydroxylic solvent. International Journal of Thermodynamics, 21(2), 70-80. https://doi.org/10.5541/ijot.303607
AMA Barros S, S. Andrade R, Iglesias M. Effect of temperature on thermodynamic properties of protic ionic liquids: 2-hydroxy ethylammonium lactate (2-HEAL) + short hydroxylic solvent. International Journal of Thermodynamics. May 2018;21(2):70-80. doi:10.5541/ijot.303607
Chicago Barros, Safira, Rebecca S. Andrade, and Miguel Iglesias. “Effect of Temperature on Thermodynamic Properties of Protic Ionic Liquids: 2-Hydroxy Ethylammonium Lactate (2-HEAL) + Short Hydroxylic Solvent”. International Journal of Thermodynamics 21, no. 2 (May 2018): 70-80. https://doi.org/10.5541/ijot.303607.
EndNote Barros S, S. Andrade R, Iglesias M (May 1, 2018) Effect of temperature on thermodynamic properties of protic ionic liquids: 2-hydroxy ethylammonium lactate (2-HEAL) + short hydroxylic solvent. International Journal of Thermodynamics 21 2 70–80.
IEEE S. Barros, R. S. Andrade, and M. Iglesias, “Effect of temperature on thermodynamic properties of protic ionic liquids: 2-hydroxy ethylammonium lactate (2-HEAL) + short hydroxylic solvent”, International Journal of Thermodynamics, vol. 21, no. 2, pp. 70–80, 2018, doi: 10.5541/ijot.303607.
ISNAD Barros, Safira et al. “Effect of Temperature on Thermodynamic Properties of Protic Ionic Liquids: 2-Hydroxy Ethylammonium Lactate (2-HEAL) + Short Hydroxylic Solvent”. International Journal of Thermodynamics 21/2 (May 2018), 70-80. https://doi.org/10.5541/ijot.303607.
JAMA Barros S, S. Andrade R, Iglesias M. Effect of temperature on thermodynamic properties of protic ionic liquids: 2-hydroxy ethylammonium lactate (2-HEAL) + short hydroxylic solvent. International Journal of Thermodynamics. 2018;21:70–80.
MLA Barros, Safira et al. “Effect of Temperature on Thermodynamic Properties of Protic Ionic Liquids: 2-Hydroxy Ethylammonium Lactate (2-HEAL) + Short Hydroxylic Solvent”. International Journal of Thermodynamics, vol. 21, no. 2, 2018, pp. 70-80, doi:10.5541/ijot.303607.
Vancouver Barros S, S. Andrade R, Iglesias M. Effect of temperature on thermodynamic properties of protic ionic liquids: 2-hydroxy ethylammonium lactate (2-HEAL) + short hydroxylic solvent. International Journal of Thermodynamics. 2018;21(2):70-8.

Cited By