Research Article
BibTex RIS Cite
Year 2018, Volume: 21 Issue: 4, 191 - 200, 04.12.2018
https://doi.org/10.5541/ijot.427242

Abstract

References

  • O. Nomoto, “Empirical formula for sound velocity in liquid mixtures,” J. Phys. Soc. Jpn., 13, 1528-1532, 1958.
  • W. Van Dael, E. Vangeel, Proceedings of the First International Conference on Calorimetry and Thermodynamics (Warsaw, 1969).
  • Z. J. Wang, A. Nur, “Ultrasonic velocities in pure hydrocarbons and mixtures,” J. Acoust. Soc. Am., 89 (6), 2725-2730, 1991.
  • S. Ernst, J. Glinski, B. Jezowska-Trzebiatowska, “Dependence of the ultrasound velocity on association of liquids,” Acta Phys. Polon., A55, 501-516, 1979.
  • J. Glinski, "Additivity of sound velocity in binary liquid mixtures,” J. Sol. Chem., 31 (1), 59-70, 2002.
  • H. Pfeiffer, K. Heremans, “The sound velocity in ideal liquid mixtures from thermal volume fluctuations,” Chemphyschem., 6 (4), 697-705, 2005.
  • J. G. Berryman, “Analysis of ultrasonic velocities in hydrocarbon mixtures,” J. Acoust. Soc. Am., 93 (5), 2666-2668, 1993.
  • A. Abe, P. J. Flory, “The thermodynamic properties of mixtures of small non-polar molecules”, J. Am. Chem. Soc., 82, 1838-1845, 1965.
  • A. Gayol, M. Iglesias, J. M. Goenaga, R. G. Concha, J. M. Resa, “Temperature influence on solution properties of ethanol+n-alkane mixtures,” J. Mol. Liq., 135 (1–3), 105-114, 2007.
  • S. Ernst, M. Dzida, “Prediction of the speed of sound in the ethanol+n-heptane system: New application of the Extended Real Associated Solution model,” Fluid Phase Equilib., 146 (1–2), 25-33, 1998.
  • J. Glinski, “Determination of the conditional association constants from the sound velocity data in binary liquid mixtures,” J. Chem. Phys., 118 (5), 2301-2307, 2003.
  • J. Glinski, “Determination of the conditional dimerization constants from the sound velocity data in binary liquid mixtures containing an associating solute and a nonassociating solvent,” J. Chem. Phys., 123 (7), 1-6, 2005.
  • F. Aliotta, J. Gapiński, M. Pochylski, R. C. Ponterio, F. Saija, G. Salvato, “Excess compressibility in binary liquid mixtures,” J. Chem. Phys., 126 (22), 224508-224508, 2007.
  • J. D. Pandey, “Sound velocity and surface tension from Flory's statistical theory,” J. Chem. Soc. Faraday Trans. I, 75, 2160-2164, 1979.T. Lafitte, D. Bessieres, M. M. Piñeiro, J. L. Daridon, “Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach,” J. Chem. Phys., 124 (2), 024509, 2006.
  • T. Lafitte, D. Bessieres, M. M. Piñeiro, J. L. Daridon, “Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach,” J. Chem. Phys., 124 (2), 024509, 2006.
  • B. Jacobson, “Intermolecular free lengths in the liquid state. I. Adiabatic and isothermal compressibilities,” Acta Chem. Scan., 6, 1485-1498, 1952.R. Nutsch-kuhnkies, “Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid with different diluents at 303.15 K,” Acustica, 15, 383-386, 1965.
  • R. Nutsch-kuhnkies, “Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid with different diluents at 303.15 K,” Acustica, 15, 383-386, 1965.
  • W. Schaffs, “Zur Bestimmung von Molekülradien organischer Flüssigkeiten aus Schallgeschwindigkeit und Dichte,” Z. Phys., 114, 110-115, 1975.
  • W. Schaffs, “The Problem of a Theoretical Calculation of the Velocity of Sound for Binary Liquid Mixtures,” Acta Acust united Ac., 33 (4), 272-276, 1975.
  • B. E. Poling, J. M. Prausnitz, J. P. O’Connell, The properties of gases and liquids, fifth ed., McGraw-Hill, New York, 2001.
  • L. Hnedkovsky, I. Cibulka, “Liquid densities at elevated pressure of n-alkanes from C5 to C16: A critical evaluation of experimental data,” J. Chem. Eng. Data, 41, 657-668, 1996.
  • TRC Thermodynamic Tables; Thermodynamic Research Center, Texas A&M University: College Station, TX, 1994.
  • T. M. Aminabhavi, B. P. Virupaxagouda, “Density, refractive index, viscosity, and speed of sound in binary mixtures of ethenylbenzene with hexane, heptane, octane, nonane, decane, and dodecane,” J. Chem. Eng. Data, 42, 641-646, 1997.
  • K. Rajagopal, S. Chenthilnath, “Excess parameter studies on the binary mixtures of toluene with ketones at different temperatures,” J. Chem. Thermodyn., 42, 675-683, 2010.
  • H. Shekaari, S. S. Mousavi, “Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T= (298.15–328.15) K,” Fluid Phase Equilib., 291(2), 201–207, 2010.
  • M. Hasan, A. P. Hiray, U. B. Kadam, D. F. Shirude, K. J. Kurhe, A. B. Sawant, “Densities, sound speed, and IR studies of (methanol + 1-acetoxybutane) and (methanol + 1,1-dimethylethyl ester) at (298.15, 303.15, 308.15, and 313.15) K,” J. Chem. Eng. Data, 55(1), 535–538, 2010.
  • N. V. Sastry, R. R. Thakor and M. C. Patel, “Excess molar volumes, viscosity deviations, excess isentropic compressibilities and deviations in relative permittivities of (alkyl acetates (methyl, ethyl, butyl and isoamyl) +n-hexane, + benzene, + toluene, + (o-, m-,p-) xylenes, + (chloro-, bromo-, nitro-) benzene at temperatures from 298.15 to 313.15 K,” J. Mol. Liq., 144(1-2), 13-22, 2009.
  • V. K. Syal, S. Chauhan, U. Kumari, “Ultrasonic velocity of binary mixtures of acetone and dioxane with dimethylsulphoxide as one component,” IJPAP, 43, 844-848, 2005.
  • S. R. Dandwate, “Study of velocity of ultrasonic waves in binary mixtures of liquid at room temperature,” IJPAP, 6, 489-494, 2010.
  • J. D. Pandey, A. K. Singh, R. Dey, “Novel approach for prediction of ultrasonic velocity in quaternary liquid mixtures,” Pramana, 64(1), 135-139, 2005.
  • G. Marino, B. Orge, M. Iglesias, J. Tojo, “Liquid−liquid equilibria of acetone+methanol+n-Alkane (C6−C8) at different temperatures,” J. Chem. Eng. Data, 45, 457-460, 2000.
  • B. Orge, M. Iglesias, A. Rodríguez, J. M. Canosa, J. Tojo, “Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15 K,” Fluid Phase Equilib., 133, 213-227, 1997.
  • M. Iglesias, B. Orge, M. Dominguez, J. Tojo, “Mixing properties of the binary mixtures of acetone, methanol, ethanol, and 2-butanone at 298.15 K,” Phys. Chem. Liq., 37, 9-29, 1998.
  • G. Marino, M. M. Piñeiro, M. Iglesias, B. Orge, J. Tojo, “Temperature dependence of binary mixing properties for acetone, methanol, and linear aliphatic alkanes (C6-C8),” J. Chem. Eng. Data, 46, 728-734, 2001.
  • M. Iglesias, B. Orge, M. M. Piñeiro, G. Marino, J. Tojo, “Volumetric properties prediction by cubic EOS for non-ideal mixtures: application to the ternary system acetone+methanol+n-hexane,” Thermochim. Acta, 328(1-2), 265-275, 1999.
  • I. Nagata, K. Tamura, “Excess molar enthalpies of {methanol or ethanol + (2-butanone + benzene)} at 298.15 K,” J. Chem. Thermodyn., 22, 279-283, 1990.
  • A. Bondi, “van der Waals volumes and radii,” J. Phys. Chem., 68, 441-451, 1964.
  • V. P. Skripov, M. Z. Faizullin, “Thermodynamic similarity of phase-separating binary liquid mixtures having an upper critical temperature,“ J. Chem. Thermodyn., 21, 687-700, 1989.

Temperature dependence of isentropic compressibilities for the ternary mixture Acetone + Methanol + n-Hexane

Year 2018, Volume: 21 Issue: 4, 191 - 200, 04.12.2018
https://doi.org/10.5541/ijot.427242

Abstract

In this work, the
applicability of Free Length and Collision Factor theories to predict
multicomponent isentropic compressibilities is analyzed and compared. To this
end,
appropriate expansions for ternary mixtures were
derived from the original works, and then applied to a mixture containing dislike
compounds in terms of functional molecular groups. Excess molar volumes from
open literature and new experimental ultrasonic velocities of the mixture acetone+methanol+n-hexane
were used to compute the corresponding isentropic compressibilities. A good
accuracy was obtained when ternary prediction is attempted in this partially
soluble mixture at different temperatures by the Collision Factor theory. These
results show the versatility of this model for estimation studies in complex
multicomponent mixtures enclosing phase splitting.

References

  • O. Nomoto, “Empirical formula for sound velocity in liquid mixtures,” J. Phys. Soc. Jpn., 13, 1528-1532, 1958.
  • W. Van Dael, E. Vangeel, Proceedings of the First International Conference on Calorimetry and Thermodynamics (Warsaw, 1969).
  • Z. J. Wang, A. Nur, “Ultrasonic velocities in pure hydrocarbons and mixtures,” J. Acoust. Soc. Am., 89 (6), 2725-2730, 1991.
  • S. Ernst, J. Glinski, B. Jezowska-Trzebiatowska, “Dependence of the ultrasound velocity on association of liquids,” Acta Phys. Polon., A55, 501-516, 1979.
  • J. Glinski, "Additivity of sound velocity in binary liquid mixtures,” J. Sol. Chem., 31 (1), 59-70, 2002.
  • H. Pfeiffer, K. Heremans, “The sound velocity in ideal liquid mixtures from thermal volume fluctuations,” Chemphyschem., 6 (4), 697-705, 2005.
  • J. G. Berryman, “Analysis of ultrasonic velocities in hydrocarbon mixtures,” J. Acoust. Soc. Am., 93 (5), 2666-2668, 1993.
  • A. Abe, P. J. Flory, “The thermodynamic properties of mixtures of small non-polar molecules”, J. Am. Chem. Soc., 82, 1838-1845, 1965.
  • A. Gayol, M. Iglesias, J. M. Goenaga, R. G. Concha, J. M. Resa, “Temperature influence on solution properties of ethanol+n-alkane mixtures,” J. Mol. Liq., 135 (1–3), 105-114, 2007.
  • S. Ernst, M. Dzida, “Prediction of the speed of sound in the ethanol+n-heptane system: New application of the Extended Real Associated Solution model,” Fluid Phase Equilib., 146 (1–2), 25-33, 1998.
  • J. Glinski, “Determination of the conditional association constants from the sound velocity data in binary liquid mixtures,” J. Chem. Phys., 118 (5), 2301-2307, 2003.
  • J. Glinski, “Determination of the conditional dimerization constants from the sound velocity data in binary liquid mixtures containing an associating solute and a nonassociating solvent,” J. Chem. Phys., 123 (7), 1-6, 2005.
  • F. Aliotta, J. Gapiński, M. Pochylski, R. C. Ponterio, F. Saija, G. Salvato, “Excess compressibility in binary liquid mixtures,” J. Chem. Phys., 126 (22), 224508-224508, 2007.
  • J. D. Pandey, “Sound velocity and surface tension from Flory's statistical theory,” J. Chem. Soc. Faraday Trans. I, 75, 2160-2164, 1979.T. Lafitte, D. Bessieres, M. M. Piñeiro, J. L. Daridon, “Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach,” J. Chem. Phys., 124 (2), 024509, 2006.
  • T. Lafitte, D. Bessieres, M. M. Piñeiro, J. L. Daridon, “Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach,” J. Chem. Phys., 124 (2), 024509, 2006.
  • B. Jacobson, “Intermolecular free lengths in the liquid state. I. Adiabatic and isothermal compressibilities,” Acta Chem. Scan., 6, 1485-1498, 1952.R. Nutsch-kuhnkies, “Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid with different diluents at 303.15 K,” Acustica, 15, 383-386, 1965.
  • R. Nutsch-kuhnkies, “Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid with different diluents at 303.15 K,” Acustica, 15, 383-386, 1965.
  • W. Schaffs, “Zur Bestimmung von Molekülradien organischer Flüssigkeiten aus Schallgeschwindigkeit und Dichte,” Z. Phys., 114, 110-115, 1975.
  • W. Schaffs, “The Problem of a Theoretical Calculation of the Velocity of Sound for Binary Liquid Mixtures,” Acta Acust united Ac., 33 (4), 272-276, 1975.
  • B. E. Poling, J. M. Prausnitz, J. P. O’Connell, The properties of gases and liquids, fifth ed., McGraw-Hill, New York, 2001.
  • L. Hnedkovsky, I. Cibulka, “Liquid densities at elevated pressure of n-alkanes from C5 to C16: A critical evaluation of experimental data,” J. Chem. Eng. Data, 41, 657-668, 1996.
  • TRC Thermodynamic Tables; Thermodynamic Research Center, Texas A&M University: College Station, TX, 1994.
  • T. M. Aminabhavi, B. P. Virupaxagouda, “Density, refractive index, viscosity, and speed of sound in binary mixtures of ethenylbenzene with hexane, heptane, octane, nonane, decane, and dodecane,” J. Chem. Eng. Data, 42, 641-646, 1997.
  • K. Rajagopal, S. Chenthilnath, “Excess parameter studies on the binary mixtures of toluene with ketones at different temperatures,” J. Chem. Thermodyn., 42, 675-683, 2010.
  • H. Shekaari, S. S. Mousavi, “Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T= (298.15–328.15) K,” Fluid Phase Equilib., 291(2), 201–207, 2010.
  • M. Hasan, A. P. Hiray, U. B. Kadam, D. F. Shirude, K. J. Kurhe, A. B. Sawant, “Densities, sound speed, and IR studies of (methanol + 1-acetoxybutane) and (methanol + 1,1-dimethylethyl ester) at (298.15, 303.15, 308.15, and 313.15) K,” J. Chem. Eng. Data, 55(1), 535–538, 2010.
  • N. V. Sastry, R. R. Thakor and M. C. Patel, “Excess molar volumes, viscosity deviations, excess isentropic compressibilities and deviations in relative permittivities of (alkyl acetates (methyl, ethyl, butyl and isoamyl) +n-hexane, + benzene, + toluene, + (o-, m-,p-) xylenes, + (chloro-, bromo-, nitro-) benzene at temperatures from 298.15 to 313.15 K,” J. Mol. Liq., 144(1-2), 13-22, 2009.
  • V. K. Syal, S. Chauhan, U. Kumari, “Ultrasonic velocity of binary mixtures of acetone and dioxane with dimethylsulphoxide as one component,” IJPAP, 43, 844-848, 2005.
  • S. R. Dandwate, “Study of velocity of ultrasonic waves in binary mixtures of liquid at room temperature,” IJPAP, 6, 489-494, 2010.
  • J. D. Pandey, A. K. Singh, R. Dey, “Novel approach for prediction of ultrasonic velocity in quaternary liquid mixtures,” Pramana, 64(1), 135-139, 2005.
  • G. Marino, B. Orge, M. Iglesias, J. Tojo, “Liquid−liquid equilibria of acetone+methanol+n-Alkane (C6−C8) at different temperatures,” J. Chem. Eng. Data, 45, 457-460, 2000.
  • B. Orge, M. Iglesias, A. Rodríguez, J. M. Canosa, J. Tojo, “Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15 K,” Fluid Phase Equilib., 133, 213-227, 1997.
  • M. Iglesias, B. Orge, M. Dominguez, J. Tojo, “Mixing properties of the binary mixtures of acetone, methanol, ethanol, and 2-butanone at 298.15 K,” Phys. Chem. Liq., 37, 9-29, 1998.
  • G. Marino, M. M. Piñeiro, M. Iglesias, B. Orge, J. Tojo, “Temperature dependence of binary mixing properties for acetone, methanol, and linear aliphatic alkanes (C6-C8),” J. Chem. Eng. Data, 46, 728-734, 2001.
  • M. Iglesias, B. Orge, M. M. Piñeiro, G. Marino, J. Tojo, “Volumetric properties prediction by cubic EOS for non-ideal mixtures: application to the ternary system acetone+methanol+n-hexane,” Thermochim. Acta, 328(1-2), 265-275, 1999.
  • I. Nagata, K. Tamura, “Excess molar enthalpies of {methanol or ethanol + (2-butanone + benzene)} at 298.15 K,” J. Chem. Thermodyn., 22, 279-283, 1990.
  • A. Bondi, “van der Waals volumes and radii,” J. Phys. Chem., 68, 441-451, 1964.
  • V. P. Skripov, M. Z. Faizullin, “Thermodynamic similarity of phase-separating binary liquid mixtures having an upper critical temperature,“ J. Chem. Thermodyn., 21, 687-700, 1989.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Regular Original Research Article
Authors

Miguel Iglesias

Rebecca S. Andrade 0000-0001-8915-7220

Gonzalo Marino This is me

Publication Date December 4, 2018
Published in Issue Year 2018 Volume: 21 Issue: 4

Cite

APA Iglesias, M., S. Andrade, R., & Marino, G. (2018). Temperature dependence of isentropic compressibilities for the ternary mixture Acetone + Methanol + n-Hexane. International Journal of Thermodynamics, 21(4), 191-200. https://doi.org/10.5541/ijot.427242
AMA Iglesias M, S. Andrade R, Marino G. Temperature dependence of isentropic compressibilities for the ternary mixture Acetone + Methanol + n-Hexane. International Journal of Thermodynamics. December 2018;21(4):191-200. doi:10.5541/ijot.427242
Chicago Iglesias, Miguel, Rebecca S. Andrade, and Gonzalo Marino. “Temperature Dependence of Isentropic Compressibilities for the Ternary Mixture Acetone + Methanol + N-Hexane”. International Journal of Thermodynamics 21, no. 4 (December 2018): 191-200. https://doi.org/10.5541/ijot.427242.
EndNote Iglesias M, S. Andrade R, Marino G (December 1, 2018) Temperature dependence of isentropic compressibilities for the ternary mixture Acetone + Methanol + n-Hexane. International Journal of Thermodynamics 21 4 191–200.
IEEE M. Iglesias, R. S. Andrade, and G. Marino, “Temperature dependence of isentropic compressibilities for the ternary mixture Acetone + Methanol + n-Hexane”, International Journal of Thermodynamics, vol. 21, no. 4, pp. 191–200, 2018, doi: 10.5541/ijot.427242.
ISNAD Iglesias, Miguel et al. “Temperature Dependence of Isentropic Compressibilities for the Ternary Mixture Acetone + Methanol + N-Hexane”. International Journal of Thermodynamics 21/4 (December 2018), 191-200. https://doi.org/10.5541/ijot.427242.
JAMA Iglesias M, S. Andrade R, Marino G. Temperature dependence of isentropic compressibilities for the ternary mixture Acetone + Methanol + n-Hexane. International Journal of Thermodynamics. 2018;21:191–200.
MLA Iglesias, Miguel et al. “Temperature Dependence of Isentropic Compressibilities for the Ternary Mixture Acetone + Methanol + N-Hexane”. International Journal of Thermodynamics, vol. 21, no. 4, 2018, pp. 191-00, doi:10.5541/ijot.427242.
Vancouver Iglesias M, S. Andrade R, Marino G. Temperature dependence of isentropic compressibilities for the ternary mixture Acetone + Methanol + n-Hexane. International Journal of Thermodynamics. 2018;21(4):191-200.