Research Article
BibTex RIS Cite

Optimal Condition of Finite Number of Heat-Recovery Cycles for a Non-Isothermal Heat Source

Year 2020, Volume: 23 Issue: 1, 1 - 11, 29.02.2020
https://doi.org/10.5541/ijot.633485

Abstract

This study analyzes a
temperature condition that produces maximal power from a non-isothermal heat
source under a finite number of heat-recovery thermodynamic cycles. Some previous
studies have theoretically analyzed a system utilizing thermal energy from heat
sources under multiple thermodynamic cycles assuming a constant heat-source
temperature. However, many heat sources for heat-recovery thermodynamic cycles
are non-isothermal, where the temperature changes considerably during heat
exchange with the cycles. Therefore, it is necessary to consider the
temperature change of the heat source. First, a condition that maximizes the
power generated by a combination of single/multiple Carnot cycles from
constant-specific-heat heat sources is analyzed, and the optimal temperature is
derived analytically. Subsequently, simulations of the Rankine cycle and
several patterns of the Kalina cycle are compared with those of the analytical
model. These comparisons reveal that the proposed model effectively estimates
the condition for heat-recovery cycles that produce maximal power from a non-isothermal
heat source.
Using the proposed method, the required number of cycles and their
operating conditions under a given heat source condition are estimated, without
any information about cycle configurations, types of working fluids, and
iteration of simulation calculation under inappropriate conditions, and a systematic
exploration of the optimal system is ensured. 

References

  • X. Zhang, M. He, Y. Zhang, “A review of research on the Kalina cycle,” Renew. Sustain. Energy Rev., 16(7), 5309-5318, 2012. doi: 10.1016/j.rser.2012.05.040.
  • M. Fallah, S. Mohammad S. Mahmoudi, M. Yari, R. A. Ghiasi, “Advanced exergy analysis of the Kalina cycle applied for low temperature enhanced geothermal system,” Energy Convers. Manag, 50(3), 576-582, 2009. doi: 10.1016/j.enconman.2015.11.017
  • J. Bao, L. Zhao, “A review of working fluid and expander selections for organic Rankine cycle,” Renew. Sustain. Energy Rev., 24, 325-342, 2013. doi: 10.1016/j.rser.2013.03.040
  • D. Walraven, B. Laenen, W. D’haeseleer, “Comparison of thermodynamic cycles for power production from low-temperature geothermal heat sources,” Energy Convers. Manag., 66, 220-233, 2013. doi: 10.1016/j.enconman.2012.10.003.
  • P. Bombarda, C. M. Invernizzi, C. Pietra, “Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles,” Appl. Therm. Eng., 30, 212-219, 2012. doi: 10.1016/j.applthermaleng.2009.08.006.
  • V. Zare, S. M. S. Mahmoudi, “A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor,” Energy, 79, 398-406, 2015. doi: 10.1016/j.energy.2014.11.026.
  • Y. Dai, J. Wang, L. Gao, “Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery,” Energy Convers. Manag., 50(3), 576-582, 2009. doi: 10.1016/j.enconman.2008.10.018.
  • J. P. Roy, M. K. Mishra, A. Misra, “Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle,” Energy, 35, 5049-5062, 2010. doi: 10.1016/j.energy.2010.08.013.
  • A. M. Delgado-Torres, L. García-Rodríguez, “Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC),” Energy Convers. Manag., 51, 2846-2856, 2010. doi: 10.1016/j.enconman.2010.06.022.
  • Z. Q. Wang, N. J. Zhou, J. Guo, X. Y. Wang, “Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat,” Energy, 40(1), 107-115, 2012. doi: 10.1016/j.energy.2012.02.022.
  • T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, K. F. Tsai, “A study of organic working fluids on system efficiency of an ORC using low-grade energy sources,” Energy, 35, 1403-1411, 2010. doi: 10.1016/j.energy.2009.11.025.
  • A. I. Papadopoulos, M. Stijepovic, P. Linke, “On the systematic design and selection of optimal working fluids for Organic Rankine Cycles,” Appl. Therm. Eng., 30, 760-769, 2010. doi: 10.1016/j.applthermaleng.2009.12.006.
  • H. D. M. Hettiarachchi, M. Golubovic, W. M. Worek, Y. Ikegami, “The performance of the Kalina cycle system 11(KCS-11) with low-temperature heat sources,” J. Energy Resour. Technol., 129(3), 243-247, 2007. doi: 10.1115/1.2748815.
  • S. Ogriseck, “Integration of Kalina cycle in a combined heat and power plant, a case study,” Appl. Therm. Eng., 29, 2843-2848, 2009. doi: 10.1016/j.applthermaleng.2009.02.006.
  • H. Saffari, S. Sadeghi, M. Khoshzat, P. Mehregan, “Thermodynamic analysis and optimization of a geothermal Kalina cycle system using Artificial Bee Colony algorithm,” Renew. Energy, 89, 154-167, 2016. doi: 10.1016/j.renene.2015.11.087.
  • O. K. Singh, S. C. Kaushik, “Energy and exergy analysis and optimization of Kalina cycle coupled with a coal fired steam power plant,” Appl. Therm. Eng., 29, 2843-2848, 2009. doi: 10.1016/j.applthermaleng.2012.10.006.
  • R. Bahrampoury, A. Behbahaninia, “Thermodynamic optimization and thermoeconomic analysis of four double pressure Kalina cycles driven from Kalina cycle system 11,” Energy Convers. Manag, 152, 110-123, 2017. doi: 10.1016/j.enconman.2017.09.046.
  • A. Bejan, Entropy generation minimization: The method of thermodynamic optimization of finite-size systems and finite-time processes, New York, USA: CRC Press, 1995.
  • F. L. Curzon, B. Ahlborn “Efficiency of a Carnot engine at maximum power output,” Am. J. Phys., 43(22), 22-24, 1975. doi: 10.1119/1.10023.
  • A. Bejan, M. R. Errera, “Maximum power from a hot stream,” Int. J. Heat Mass Transf., 41(13), 2025-2035, 1998. doi:10.1016/S0017-9310(97)00256-1.
  • PROPATH Group, PROPATH: A Program package for thermophysical properties, version 13.1, 2008.
  • R. Tillner-Roth, F. Harms-Watzenberg, H. D. Baehr, “Eine neue Fundamentalgleichung fur Ammoniak,” DKV-Tagungsbericht, 20, 167-181, 1993.
  • O. M. Ibrahim, S. A. Klein, “Thermodynamic properties of ammonia-water mixtures,” ASHRAE Trans., 99, 1495-1502, 1993.
  • F. Sun, W. Zhou, Y. Ikegami, K. Nakagami, X. Su, “Energy–exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11),” Renew. Energy, 66, 268-279, 2014. doi: 10.1016/j.renene.2013.12.015.
  • A. Toffolo, S. Rech, A. Lazzaretto, “Generation of Complex Energy Systems by Combination of Elementary Processes,” J. Energy Resour. Technol., 140(11), 1-11, 2018.doi: 10.1115/1.4040194.
  • K. Seki, K. Takeshita, Y. Amano, “Development of Complex Energy Systems with Absorption Technology by Combining Elementary Processes,” Energies, 12(3), 495, 2019. doi: 10.1016/10.3390/en12030495.
Year 2020, Volume: 23 Issue: 1, 1 - 11, 29.02.2020
https://doi.org/10.5541/ijot.633485

Abstract

References

  • X. Zhang, M. He, Y. Zhang, “A review of research on the Kalina cycle,” Renew. Sustain. Energy Rev., 16(7), 5309-5318, 2012. doi: 10.1016/j.rser.2012.05.040.
  • M. Fallah, S. Mohammad S. Mahmoudi, M. Yari, R. A. Ghiasi, “Advanced exergy analysis of the Kalina cycle applied for low temperature enhanced geothermal system,” Energy Convers. Manag, 50(3), 576-582, 2009. doi: 10.1016/j.enconman.2015.11.017
  • J. Bao, L. Zhao, “A review of working fluid and expander selections for organic Rankine cycle,” Renew. Sustain. Energy Rev., 24, 325-342, 2013. doi: 10.1016/j.rser.2013.03.040
  • D. Walraven, B. Laenen, W. D’haeseleer, “Comparison of thermodynamic cycles for power production from low-temperature geothermal heat sources,” Energy Convers. Manag., 66, 220-233, 2013. doi: 10.1016/j.enconman.2012.10.003.
  • P. Bombarda, C. M. Invernizzi, C. Pietra, “Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles,” Appl. Therm. Eng., 30, 212-219, 2012. doi: 10.1016/j.applthermaleng.2009.08.006.
  • V. Zare, S. M. S. Mahmoudi, “A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor,” Energy, 79, 398-406, 2015. doi: 10.1016/j.energy.2014.11.026.
  • Y. Dai, J. Wang, L. Gao, “Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery,” Energy Convers. Manag., 50(3), 576-582, 2009. doi: 10.1016/j.enconman.2008.10.018.
  • J. P. Roy, M. K. Mishra, A. Misra, “Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle,” Energy, 35, 5049-5062, 2010. doi: 10.1016/j.energy.2010.08.013.
  • A. M. Delgado-Torres, L. García-Rodríguez, “Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC),” Energy Convers. Manag., 51, 2846-2856, 2010. doi: 10.1016/j.enconman.2010.06.022.
  • Z. Q. Wang, N. J. Zhou, J. Guo, X. Y. Wang, “Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat,” Energy, 40(1), 107-115, 2012. doi: 10.1016/j.energy.2012.02.022.
  • T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, K. F. Tsai, “A study of organic working fluids on system efficiency of an ORC using low-grade energy sources,” Energy, 35, 1403-1411, 2010. doi: 10.1016/j.energy.2009.11.025.
  • A. I. Papadopoulos, M. Stijepovic, P. Linke, “On the systematic design and selection of optimal working fluids for Organic Rankine Cycles,” Appl. Therm. Eng., 30, 760-769, 2010. doi: 10.1016/j.applthermaleng.2009.12.006.
  • H. D. M. Hettiarachchi, M. Golubovic, W. M. Worek, Y. Ikegami, “The performance of the Kalina cycle system 11(KCS-11) with low-temperature heat sources,” J. Energy Resour. Technol., 129(3), 243-247, 2007. doi: 10.1115/1.2748815.
  • S. Ogriseck, “Integration of Kalina cycle in a combined heat and power plant, a case study,” Appl. Therm. Eng., 29, 2843-2848, 2009. doi: 10.1016/j.applthermaleng.2009.02.006.
  • H. Saffari, S. Sadeghi, M. Khoshzat, P. Mehregan, “Thermodynamic analysis and optimization of a geothermal Kalina cycle system using Artificial Bee Colony algorithm,” Renew. Energy, 89, 154-167, 2016. doi: 10.1016/j.renene.2015.11.087.
  • O. K. Singh, S. C. Kaushik, “Energy and exergy analysis and optimization of Kalina cycle coupled with a coal fired steam power plant,” Appl. Therm. Eng., 29, 2843-2848, 2009. doi: 10.1016/j.applthermaleng.2012.10.006.
  • R. Bahrampoury, A. Behbahaninia, “Thermodynamic optimization and thermoeconomic analysis of four double pressure Kalina cycles driven from Kalina cycle system 11,” Energy Convers. Manag, 152, 110-123, 2017. doi: 10.1016/j.enconman.2017.09.046.
  • A. Bejan, Entropy generation minimization: The method of thermodynamic optimization of finite-size systems and finite-time processes, New York, USA: CRC Press, 1995.
  • F. L. Curzon, B. Ahlborn “Efficiency of a Carnot engine at maximum power output,” Am. J. Phys., 43(22), 22-24, 1975. doi: 10.1119/1.10023.
  • A. Bejan, M. R. Errera, “Maximum power from a hot stream,” Int. J. Heat Mass Transf., 41(13), 2025-2035, 1998. doi:10.1016/S0017-9310(97)00256-1.
  • PROPATH Group, PROPATH: A Program package for thermophysical properties, version 13.1, 2008.
  • R. Tillner-Roth, F. Harms-Watzenberg, H. D. Baehr, “Eine neue Fundamentalgleichung fur Ammoniak,” DKV-Tagungsbericht, 20, 167-181, 1993.
  • O. M. Ibrahim, S. A. Klein, “Thermodynamic properties of ammonia-water mixtures,” ASHRAE Trans., 99, 1495-1502, 1993.
  • F. Sun, W. Zhou, Y. Ikegami, K. Nakagami, X. Su, “Energy–exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11),” Renew. Energy, 66, 268-279, 2014. doi: 10.1016/j.renene.2013.12.015.
  • A. Toffolo, S. Rech, A. Lazzaretto, “Generation of Complex Energy Systems by Combination of Elementary Processes,” J. Energy Resour. Technol., 140(11), 1-11, 2018.doi: 10.1115/1.4040194.
  • K. Seki, K. Takeshita, Y. Amano, “Development of Complex Energy Systems with Absorption Technology by Combining Elementary Processes,” Energies, 12(3), 495, 2019. doi: 10.1016/10.3390/en12030495.
There are 26 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Regular Original Research Article
Authors

Keisuke Takeshita 0000-0003-0942-0514

Yoshiharu Amano

Publication Date February 29, 2020
Published in Issue Year 2020 Volume: 23 Issue: 1

Cite

APA Takeshita, K., & Amano, Y. (2020). Optimal Condition of Finite Number of Heat-Recovery Cycles for a Non-Isothermal Heat Source. International Journal of Thermodynamics, 23(1), 1-11. https://doi.org/10.5541/ijot.633485
AMA Takeshita K, Amano Y. Optimal Condition of Finite Number of Heat-Recovery Cycles for a Non-Isothermal Heat Source. International Journal of Thermodynamics. February 2020;23(1):1-11. doi:10.5541/ijot.633485
Chicago Takeshita, Keisuke, and Yoshiharu Amano. “Optimal Condition of Finite Number of Heat-Recovery Cycles for a Non-Isothermal Heat Source”. International Journal of Thermodynamics 23, no. 1 (February 2020): 1-11. https://doi.org/10.5541/ijot.633485.
EndNote Takeshita K, Amano Y (February 1, 2020) Optimal Condition of Finite Number of Heat-Recovery Cycles for a Non-Isothermal Heat Source. International Journal of Thermodynamics 23 1 1–11.
IEEE K. Takeshita and Y. Amano, “Optimal Condition of Finite Number of Heat-Recovery Cycles for a Non-Isothermal Heat Source”, International Journal of Thermodynamics, vol. 23, no. 1, pp. 1–11, 2020, doi: 10.5541/ijot.633485.
ISNAD Takeshita, Keisuke - Amano, Yoshiharu. “Optimal Condition of Finite Number of Heat-Recovery Cycles for a Non-Isothermal Heat Source”. International Journal of Thermodynamics 23/1 (February 2020), 1-11. https://doi.org/10.5541/ijot.633485.
JAMA Takeshita K, Amano Y. Optimal Condition of Finite Number of Heat-Recovery Cycles for a Non-Isothermal Heat Source. International Journal of Thermodynamics. 2020;23:1–11.
MLA Takeshita, Keisuke and Yoshiharu Amano. “Optimal Condition of Finite Number of Heat-Recovery Cycles for a Non-Isothermal Heat Source”. International Journal of Thermodynamics, vol. 23, no. 1, 2020, pp. 1-11, doi:10.5541/ijot.633485.
Vancouver Takeshita K, Amano Y. Optimal Condition of Finite Number of Heat-Recovery Cycles for a Non-Isothermal Heat Source. International Journal of Thermodynamics. 2020;23(1):1-11.