BibTex RIS Cite

Parametric Simulation of Combined Cycle Power Pant: A Case Study

Year 2011, Volume: 14 Issue: 1, 29 - 36, 01.02.2011

Abstract

In this work a thermodynamic evaluation has been carried out on an existing actual combined cycle plant (LANCO power plant) having a triple pressure heat recovery steam generator (HRSG). In this case study, an attempt has been made to improve the efficiency of the plant through a parametric study using a thermodynamic model. The compressor pressure ratio is evaluated from the terminal temperature difference at HRSG inlet instead of an initial regular fixation. The low pressure (LP) and the intermediate pressure (IP) in HRSG also evaluated from local flue gas temperatures with minimum temperature difference in heaters without initial fixation. The optimized results obtained at high pressures (HP) of 90 and 200 bar are compared with the design results of the plant. The optimum pressures obtained for deaerator, LP and IP heaters at 200 bar of HP pressure are 3.7, 8.3 and 26.5 bar respectively.

References

  • first law second law 2 References:
  • Bassily, A. M. (2005). Modeling, numerical optimization, and irreversibility reduction of a dual-pressure reheat combined-cycle. Applied Energy, 81(2), 127-151.
  • Bassily, A. M. (2007). Modeling, numerical optimization, and irreversibility reduction of a triple-pressure reheat combined cycle. Energy, 32(5), 778-794.
  • Bejan, A., 1982. Entropy Generation through Heat and Fluid Flow, Wiley, New York.
  • Casarosa, C., Donatini, F., Franco, A., (2004). Thermo economic optimization of heat recovery steam generators operating parameters for combined plants. Energy, 29(3), 389–414.
  • De, S., Biswal, S. K., (2004). Performance improvement of a coal gasification and combined cogeneration plant by multi-pressure steam generation. Applied Thermal Engineering, 24(2-3), 449–456.
  • Franco, A., Casarosa, C., (2002). On some perspectives for increasing the efficiency of combined cycle power plants. Applied Thermal Engineering, 22(13), 1501– 1518.
  • Franco, A., & Russo, A., (2002). Combined cycle plant efficiency increase based on the optimization of the heat recovery steam generator operating parameters. International Journal of Thermal Sciences, 41(9), 843– 859.
  • Kotas, T.J. (1985). The Exergy Method of Thermal Plant Analysis, Butterworths, London.
  • Marston, C. H., Hyre, M. (1995), Gas turbine bottoming cycles: triple-pressure steam versus Kalina. ASME Journal of Engineering for Gas Turbines and Power. 117(1), 10-15.
  • Ramaprabhu, V., Roy, R. P., (2004). A computational model of a combined cycle power generation unit. ASME Journal of Energy Resources Technology, 126(3). 231-240.
  • Ragland, A., Stenzel, V. W., (2000). Combined Cycle Heat Recovery Optimization - EPRI solutions. Proceedings of 2000 International Joint Power Generation Conference, Florida, July 23-26.
  • Saravanamuttoo, H. I. H., Rogers, G. F. C., Cohen, H., (2003). Gas turbine theory, Pearson Education, 5nd Edn.
  • Srinivas, T., Gupta, A. V. S. S. K. S., Reddy, B. V. (2007). Generalized Thermodynamic Analysis of Steam Power Cycle with ‘n’ number of Feed Water Heaters. Int. J. of Thermodynamics, 10(4), 177-185.
  • Ongiro, A., Ugursal, V. I., Taweel, A. M., Walker, J. D., (1997). Modeling of heat recovery steam generator performance. Applied Thermal Engineering, 17(5), 427- 446.
  • Xiang, W., Chen, Y. (2007). Performance improvement of combined cycle power plant based on the optimization of the bottom cycle and heat recuperation. Journal of Thermal Science, 16(1), 84-89.
Year 2011, Volume: 14 Issue: 1, 29 - 36, 01.02.2011

Abstract

References

  • first law second law 2 References:
  • Bassily, A. M. (2005). Modeling, numerical optimization, and irreversibility reduction of a dual-pressure reheat combined-cycle. Applied Energy, 81(2), 127-151.
  • Bassily, A. M. (2007). Modeling, numerical optimization, and irreversibility reduction of a triple-pressure reheat combined cycle. Energy, 32(5), 778-794.
  • Bejan, A., 1982. Entropy Generation through Heat and Fluid Flow, Wiley, New York.
  • Casarosa, C., Donatini, F., Franco, A., (2004). Thermo economic optimization of heat recovery steam generators operating parameters for combined plants. Energy, 29(3), 389–414.
  • De, S., Biswal, S. K., (2004). Performance improvement of a coal gasification and combined cogeneration plant by multi-pressure steam generation. Applied Thermal Engineering, 24(2-3), 449–456.
  • Franco, A., Casarosa, C., (2002). On some perspectives for increasing the efficiency of combined cycle power plants. Applied Thermal Engineering, 22(13), 1501– 1518.
  • Franco, A., & Russo, A., (2002). Combined cycle plant efficiency increase based on the optimization of the heat recovery steam generator operating parameters. International Journal of Thermal Sciences, 41(9), 843– 859.
  • Kotas, T.J. (1985). The Exergy Method of Thermal Plant Analysis, Butterworths, London.
  • Marston, C. H., Hyre, M. (1995), Gas turbine bottoming cycles: triple-pressure steam versus Kalina. ASME Journal of Engineering for Gas Turbines and Power. 117(1), 10-15.
  • Ramaprabhu, V., Roy, R. P., (2004). A computational model of a combined cycle power generation unit. ASME Journal of Energy Resources Technology, 126(3). 231-240.
  • Ragland, A., Stenzel, V. W., (2000). Combined Cycle Heat Recovery Optimization - EPRI solutions. Proceedings of 2000 International Joint Power Generation Conference, Florida, July 23-26.
  • Saravanamuttoo, H. I. H., Rogers, G. F. C., Cohen, H., (2003). Gas turbine theory, Pearson Education, 5nd Edn.
  • Srinivas, T., Gupta, A. V. S. S. K. S., Reddy, B. V. (2007). Generalized Thermodynamic Analysis of Steam Power Cycle with ‘n’ number of Feed Water Heaters. Int. J. of Thermodynamics, 10(4), 177-185.
  • Ongiro, A., Ugursal, V. I., Taweel, A. M., Walker, J. D., (1997). Modeling of heat recovery steam generator performance. Applied Thermal Engineering, 17(5), 427- 446.
  • Xiang, W., Chen, Y. (2007). Performance improvement of combined cycle power plant based on the optimization of the bottom cycle and heat recuperation. Journal of Thermal Science, 16(1), 84-89.
There are 16 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

T. Srinivas

B. V. Reddy This is me

A. V. S. S. K. S. Gupta This is me

Publication Date February 1, 2011
Published in Issue Year 2011 Volume: 14 Issue: 1

Cite

APA Srinivas, T., Reddy, B. V., & Gupta, A. V. S. S. K. S. (2011). Parametric Simulation of Combined Cycle Power Pant: A Case Study. International Journal of Thermodynamics, 14(1), 29-36.
AMA Srinivas T, Reddy BV, Gupta AVSSKS. Parametric Simulation of Combined Cycle Power Pant: A Case Study. International Journal of Thermodynamics. February 2011;14(1):29-36.
Chicago Srinivas, T., B. V. Reddy, and A. V. S. S. K. S. Gupta. “Parametric Simulation of Combined Cycle Power Pant: A Case Study”. International Journal of Thermodynamics 14, no. 1 (February 2011): 29-36.
EndNote Srinivas T, Reddy BV, Gupta AVSSKS (February 1, 2011) Parametric Simulation of Combined Cycle Power Pant: A Case Study. International Journal of Thermodynamics 14 1 29–36.
IEEE T. Srinivas, B. V. Reddy, and A. V. S. S. K. S. Gupta, “Parametric Simulation of Combined Cycle Power Pant: A Case Study”, International Journal of Thermodynamics, vol. 14, no. 1, pp. 29–36, 2011.
ISNAD Srinivas, T. et al. “Parametric Simulation of Combined Cycle Power Pant: A Case Study”. International Journal of Thermodynamics 14/1 (February 2011), 29-36.
JAMA Srinivas T, Reddy BV, Gupta AVSSKS. Parametric Simulation of Combined Cycle Power Pant: A Case Study. International Journal of Thermodynamics. 2011;14:29–36.
MLA Srinivas, T. et al. “Parametric Simulation of Combined Cycle Power Pant: A Case Study”. International Journal of Thermodynamics, vol. 14, no. 1, 2011, pp. 29-36.
Vancouver Srinivas T, Reddy BV, Gupta AVSSKS. Parametric Simulation of Combined Cycle Power Pant: A Case Study. International Journal of Thermodynamics. 2011;14(1):29-36.