BibTex RIS Cite

Thermodynamic and operational properties of heterogeneous lyophobic systems

Year 2013, Volume: 16 Issue: 1, 1 - 9, 22.03.2012

Abstract

The article presents theoretical and experimental analysis of heterogeneous lyophobic systems (HLS) useful for nontraditional high-performance HLS-based thermomechanical dissipation, accumulation and energy transformation devices development. Not typical for conventional working mediums (gas/vapor) HLS compression/decompression thermal effects are examined and model which allows to predict these effects is presented. Also the operational features of new working mediums under adiabatic conditions, including their numerous cycling, are investigated.

References

  • Abramowitz, M., and Stegun, I., A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover.
  • Bougeard, D. and Smirnov, K., S. (2006) Modelling studies of water in crystalline nanoporous aluminosilicates. Physical Chemistry Chemical Physics. 9(2), 226–245.
  • Cailliez, F., Trzpit, M., Soulard, M., Demachy, I., Boutin, A., Patarin, J., and Fuchs, A., H. (2008). Thermodynamics of water intrusion in nanoporous hydrophobic solids. Physical Chemistry Chemical Physics, 10(32), 4817–4826.
  • Coiffard, L., Eroshenko, V. (2006). Temperature effect on water intrusion/expulsion on grafted silica gels. J. of Colloid and Interface Science. 300(1), 304–309.
  • Coiffard, L., Eroshenko, V., A., Grolier, J.-P., E. (2005). Thermomechanics of the Variation of Interfaces in Heterogeneous Lyophobic Systems. AIChE J, 51(4), 1246–1257.
  • Denoyel, R., Beurroies, I., Lefevre, B. (2004). Thermodynamics of wetting: information brought by microcalorimetry. J. of Petroleum Science & Engineering, 45(3-4), 203–212.
  • Eroshenko V. A. and Lazarev Yu. F. (2012). Rheology and dynamics of repulsive clathrates. J. Of Applied Mechanics And Technical Physics, 53(1), 98–112.
  • Eroshenko, V. A. (1981a). Heterogeneous Thermodynamic System, Eroshenko Cycle of Transformation of Thermal Energy into Mechanical Energy and Devices to Achieve It (in Russian). Soviet-Russian Patent No. 1,254,811.
  • Eroshenko, V. A. (1987a). Effect of Heat Exchange on Filling of Lyophobic Pores and Capillaries with Liquid. Colloid J.USSR, 49, 769-773.
  • Eroshenko, V. A. (1987b). Limiting efficiency or maximum thermodynamic compactness of Heat Engines (in Russian). USSR Academy of Science J., Energy and Transport, 2, 125–133.
  • Karbowiak, T., Paulin, C., Ballandras, A., Weber, G., and Bellat, J.-P. (2009). Thermal Effects of Water Intrusion in Hydrophobic Nanoporous Materials. J. of American Chemical Society Communications, 131(29), 9898 – 98
  • Karbowiak, T., Paulin, C., Bellat, J.-P. (2010). Determination of water intrusion heat in hydrophobic microporous materials by high pressure calorimetry. Microporous and Mesoporous Materials, 134(1-3), 8–
  • Kirkwood, J., G., Buff, F., P. (1949) The Statistical Mechanical Theory of Surface Tension. J. of Chemical Physics. 17(3), 338–343.
  • Kong, X., Qiao, Y. (2005). Thermal effects on pressureinduced infiltration of a nanoporous system. Philosophical Magazine Letters, 85(7), 331 – 337.
  • Laouir, A., Luo, L., Tondeur, D., Cachot, T., Le Goff, P. (2003). Thermal Machines Based on Surface Energy of Wetting: Thermodynamic Analysis. AIChE Journal, 49(3), 764–781.
  • Laouir, A., Tondeur, D. (2008). Some New Results From Applying Thermodynamics to Wetting Phenomena. Int. J. of Thermodynamics, 11(2), 61-69.
  • Liu, L., Zhao, J., Culligan, P., J., Qiao, Y., and Chen, X. (2009). Thermally Responsive Fluid Behaviors in Hydrophobic Nanopores. Langmuir, 25(19), 11862 – 118
  • Martin, T., Lefevre, B., Brunel, D., Galarneau, A., Di Renzo, F., Fajula, F., Gobin, P., et al. (2002). Dissipative water intrusion in hydrophobic MCM-41 type materials. Chemical Communications, No1, 24–25. Naidich, Y. V. (1972). Contact phenomena in metallic melts (in Russian). Kiev: Naukova dumka.
  • Qiao, Y., Punyamurtula, V., K., and Han, A. (2006). Temperature dependence of working pressure of a nanoporous liquid spring. Applied Physics Letters, 89(25), 251905.
  • Rusanov, A., I. (1981). The connection between the heat of evaporation and surface energy (in Russian). Reports of the USSR Academy of Sciences. 261(3), 700–703.
  • Suciu, C.,V., Iwatsubo, T. and Deki, Sh. (2003) Investigation of a colloidal damper. J. of Colloid and Interface Science,259(1), 62–80. Wargaftik, N. B. (1972).
  • Handbook of thermophysical properties of gases and liquids (in Russian). Moscow: Nauka. Washburn, E., W. (1921). The Dynamics of Capillary Flow. The Physical Review, 17(3), 273–283.
  • Woo, H.-J., Monson, P., A. (2003). Phase behavior and dynamics of fluids in mesoporous glasses. The Physical Review E, 67(4), 041207.
Year 2013, Volume: 16 Issue: 1, 1 - 9, 22.03.2012

Abstract

References

  • Abramowitz, M., and Stegun, I., A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover.
  • Bougeard, D. and Smirnov, K., S. (2006) Modelling studies of water in crystalline nanoporous aluminosilicates. Physical Chemistry Chemical Physics. 9(2), 226–245.
  • Cailliez, F., Trzpit, M., Soulard, M., Demachy, I., Boutin, A., Patarin, J., and Fuchs, A., H. (2008). Thermodynamics of water intrusion in nanoporous hydrophobic solids. Physical Chemistry Chemical Physics, 10(32), 4817–4826.
  • Coiffard, L., Eroshenko, V. (2006). Temperature effect on water intrusion/expulsion on grafted silica gels. J. of Colloid and Interface Science. 300(1), 304–309.
  • Coiffard, L., Eroshenko, V., A., Grolier, J.-P., E. (2005). Thermomechanics of the Variation of Interfaces in Heterogeneous Lyophobic Systems. AIChE J, 51(4), 1246–1257.
  • Denoyel, R., Beurroies, I., Lefevre, B. (2004). Thermodynamics of wetting: information brought by microcalorimetry. J. of Petroleum Science & Engineering, 45(3-4), 203–212.
  • Eroshenko V. A. and Lazarev Yu. F. (2012). Rheology and dynamics of repulsive clathrates. J. Of Applied Mechanics And Technical Physics, 53(1), 98–112.
  • Eroshenko, V. A. (1981a). Heterogeneous Thermodynamic System, Eroshenko Cycle of Transformation of Thermal Energy into Mechanical Energy and Devices to Achieve It (in Russian). Soviet-Russian Patent No. 1,254,811.
  • Eroshenko, V. A. (1987a). Effect of Heat Exchange on Filling of Lyophobic Pores and Capillaries with Liquid. Colloid J.USSR, 49, 769-773.
  • Eroshenko, V. A. (1987b). Limiting efficiency or maximum thermodynamic compactness of Heat Engines (in Russian). USSR Academy of Science J., Energy and Transport, 2, 125–133.
  • Karbowiak, T., Paulin, C., Ballandras, A., Weber, G., and Bellat, J.-P. (2009). Thermal Effects of Water Intrusion in Hydrophobic Nanoporous Materials. J. of American Chemical Society Communications, 131(29), 9898 – 98
  • Karbowiak, T., Paulin, C., Bellat, J.-P. (2010). Determination of water intrusion heat in hydrophobic microporous materials by high pressure calorimetry. Microporous and Mesoporous Materials, 134(1-3), 8–
  • Kirkwood, J., G., Buff, F., P. (1949) The Statistical Mechanical Theory of Surface Tension. J. of Chemical Physics. 17(3), 338–343.
  • Kong, X., Qiao, Y. (2005). Thermal effects on pressureinduced infiltration of a nanoporous system. Philosophical Magazine Letters, 85(7), 331 – 337.
  • Laouir, A., Luo, L., Tondeur, D., Cachot, T., Le Goff, P. (2003). Thermal Machines Based on Surface Energy of Wetting: Thermodynamic Analysis. AIChE Journal, 49(3), 764–781.
  • Laouir, A., Tondeur, D. (2008). Some New Results From Applying Thermodynamics to Wetting Phenomena. Int. J. of Thermodynamics, 11(2), 61-69.
  • Liu, L., Zhao, J., Culligan, P., J., Qiao, Y., and Chen, X. (2009). Thermally Responsive Fluid Behaviors in Hydrophobic Nanopores. Langmuir, 25(19), 11862 – 118
  • Martin, T., Lefevre, B., Brunel, D., Galarneau, A., Di Renzo, F., Fajula, F., Gobin, P., et al. (2002). Dissipative water intrusion in hydrophobic MCM-41 type materials. Chemical Communications, No1, 24–25. Naidich, Y. V. (1972). Contact phenomena in metallic melts (in Russian). Kiev: Naukova dumka.
  • Qiao, Y., Punyamurtula, V., K., and Han, A. (2006). Temperature dependence of working pressure of a nanoporous liquid spring. Applied Physics Letters, 89(25), 251905.
  • Rusanov, A., I. (1981). The connection between the heat of evaporation and surface energy (in Russian). Reports of the USSR Academy of Sciences. 261(3), 700–703.
  • Suciu, C.,V., Iwatsubo, T. and Deki, Sh. (2003) Investigation of a colloidal damper. J. of Colloid and Interface Science,259(1), 62–80. Wargaftik, N. B. (1972).
  • Handbook of thermophysical properties of gases and liquids (in Russian). Moscow: Nauka. Washburn, E., W. (1921). The Dynamics of Capillary Flow. The Physical Review, 17(3), 273–283.
  • Woo, H.-J., Monson, P., A. (2003). Phase behavior and dynamics of fluids in mesoporous glasses. The Physical Review E, 67(4), 041207.
There are 23 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Valentin Eroshenko This is me

Yaroslav Grosu

Publication Date March 22, 2012
Published in Issue Year 2013 Volume: 16 Issue: 1

Cite

APA Eroshenko, V., & Grosu, Y. (2012). Thermodynamic and operational properties of heterogeneous lyophobic systems. International Journal of Thermodynamics, 16(1), 1-9.
AMA Eroshenko V, Grosu Y. Thermodynamic and operational properties of heterogeneous lyophobic systems. International Journal of Thermodynamics. December 2012;16(1):1-9.
Chicago Eroshenko, Valentin, and Yaroslav Grosu. “Thermodynamic and Operational Properties of Heterogeneous Lyophobic Systems”. International Journal of Thermodynamics 16, no. 1 (December 2012): 1-9.
EndNote Eroshenko V, Grosu Y (December 1, 2012) Thermodynamic and operational properties of heterogeneous lyophobic systems. International Journal of Thermodynamics 16 1 1–9.
IEEE V. Eroshenko and Y. Grosu, “Thermodynamic and operational properties of heterogeneous lyophobic systems”, International Journal of Thermodynamics, vol. 16, no. 1, pp. 1–9, 2012.
ISNAD Eroshenko, Valentin - Grosu, Yaroslav. “Thermodynamic and Operational Properties of Heterogeneous Lyophobic Systems”. International Journal of Thermodynamics 16/1 (December 2012), 1-9.
JAMA Eroshenko V, Grosu Y. Thermodynamic and operational properties of heterogeneous lyophobic systems. International Journal of Thermodynamics. 2012;16:1–9.
MLA Eroshenko, Valentin and Yaroslav Grosu. “Thermodynamic and Operational Properties of Heterogeneous Lyophobic Systems”. International Journal of Thermodynamics, vol. 16, no. 1, 2012, pp. 1-9.
Vancouver Eroshenko V, Grosu Y. Thermodynamic and operational properties of heterogeneous lyophobic systems. International Journal of Thermodynamics. 2012;16(1):1-9.