BibTex RIS Cite

Assessment of The Performance of a Small Capacity SI Engine Fuelled with Model Lean Mixture of Biogas

Year 2013, Volume: 16 Issue: 4, 179 - 188, 01.12.2013

Abstract

In this paper the results of the experimental study on the SI engine using biogas will be presented. The experiments were carried out on a petrol engine with a low engine displacement. Typical SI engine was selected in order to evaluate the potential application of gaseous fuel (i.e. biogas). These types of engines are available on a wide scale and commonly used in automotive sector because of the low purchase price and operating costs. It is expected that after minor modifications, the engine can easily operate in low power co-generation mode.
In an experimental part of this paper a complete study of the biogas combustion is presented and compared with the results for natural gas in the same unmodified petrol engine (without modification to its combustion system). The main objective was to compare and evaluate the performance, efficiency and environmental impact of the engine under lean air/fuel mixture conditions when using alternative fuel, i.e. biogas and natural gas.

References

  • Adhikari B. K., Barrington, S., Martinez, J. (2006). Predicted Growth of World Urban Food Waste and Methane Production. Waste Management & Research, 24, 421-433.
  • Ayala, F. A., Gerty, M. D., Heywood, J. B. (2006), Effects of Combustion Phasing, Relative Air-fuel Ratio, Compression Ratio, and Load on SI Engine Efficiency. SAE Technical Paper. 2006-01-0229, Berggren, M., Ljunggren, E., Johnsson, F. (2008). Biomass Co-Firing Potentials for Electricity Generation in Poland-Matching Supply and Co-Firing Opportunities. Biomass and Bioenergy, 32, 865-879.
  • Bade Shrestha, S.O., Narayanan, G. (2008). Landfill Gas with Hydrogen Addition – A Fuel for SI Engines. Fuel, 87, 3616-3626.
  • Curry, N., Pillay, P. (2012). Biogas Prediction and Design of a Food Waste to Energy System for the Urban Environment. Renewable Energy, 41, 200-209.
  • Das, L. M., Gulati R., Gupta P. K. (2000). A Comparative Evaluation of the Performance Characteristic of a Spark Ignition Engine Using Hydrogen and Compressed Natural Gas. Int. J. Hydrogen Energy, 25, 783-793.
  • Heywood, J. B. (1988). Internal Combustion Engine Fundamentals, First Ed. New York: McGraw-Hill.
  • Igliński, B., Iglińska, A., Kujawski, W., Buczkowski, R., Cichosz, M. (2011). Bioenergy in Poland. Renewable and Sustainable Energy Reviews, 15, 2999– 3007.
  • Leszczynski, S., Brzychczyk, P., Sekula, R. (1997). Review of Biomass as a Source of Energy for Poland. Energy Sources, 19, 845-850.
  • Mancaruso, E., Sequino, L., Vaglieco, B. M. (2011). First and Second Generation Biodiesels Spray Characterization in a Diesel Engine, Fuel, 90, 2870– 28
  • McKendry P. (2002). Energy Production from Biomass (Part 2): Conversion Technologies. Bioresource Technology, 83, 47-54.
  • Porpatham, E., Ramesh, A., Nagalingam, B. (2008). Investigation on the Effect of Concentration of Methane in Biogas when Used as a Fuel for a Spark Ignition Engine. Fuel, 87, 1651–1659.
  • Poulsen, P. H. B., Magid, J., Luxhİi, J., Neergaard, A. (2013). Effects of Fertilization with Urban and Agricultural Organic Wastes in a Field Trial - Waste Imprint on Soil Microbial Activity. Soil Biology and Biochemistry, 57, 794-802.
  • Przybyla, G., Postrzednik, S. (2006). Purposefulness of Using Real Gas Model in Analysis of Internal
  • Combustoin Engine Cycle Parameters. Journal of KONES, 13, 315-322. Silva, M. J., Souza, S. M. N., Chaves, L., Rosa, H. A., Secco, D., Santos, R. F., Baricatti, R. A., Nogueira, C. E. C. (2013). Comparative Analysis of Engine Generator Performance Using Diesel Oil and Biodiesels Available in Parana State, Brazil. Renewable and Sustainable Energy Reviews, 17, 278–282.
  • Stone R. (1999). Introduction to Internal Combustion Engines, (3rd ed.). London: MacMillan Press LTD.
  • Tien, T. M., Mai, P. X., Hung, N. D., Cong, H. T. (2010). A Study on Power Generation System Using Biogas Generated From the Waste of Pig Farm. 2010 International Forum on Strategic Technology (IFOST): Proceedings of IEEE, 203-207.
  • Weaver, C. S. (1989). Natural Gas Vehicles – A Review of the State of the Art. SAE Transactions, 98, 1190-1210.
  • White C. M., Steeper R. R., Lutz A. E. (2006). The Hydrogen – Fueled Internal Combustion Engine: a Technical Review. Int. J. Hydrogen Energy, 10, 1292130
Year 2013, Volume: 16 Issue: 4, 179 - 188, 01.12.2013

Abstract

References

  • Adhikari B. K., Barrington, S., Martinez, J. (2006). Predicted Growth of World Urban Food Waste and Methane Production. Waste Management & Research, 24, 421-433.
  • Ayala, F. A., Gerty, M. D., Heywood, J. B. (2006), Effects of Combustion Phasing, Relative Air-fuel Ratio, Compression Ratio, and Load on SI Engine Efficiency. SAE Technical Paper. 2006-01-0229, Berggren, M., Ljunggren, E., Johnsson, F. (2008). Biomass Co-Firing Potentials for Electricity Generation in Poland-Matching Supply and Co-Firing Opportunities. Biomass and Bioenergy, 32, 865-879.
  • Bade Shrestha, S.O., Narayanan, G. (2008). Landfill Gas with Hydrogen Addition – A Fuel for SI Engines. Fuel, 87, 3616-3626.
  • Curry, N., Pillay, P. (2012). Biogas Prediction and Design of a Food Waste to Energy System for the Urban Environment. Renewable Energy, 41, 200-209.
  • Das, L. M., Gulati R., Gupta P. K. (2000). A Comparative Evaluation of the Performance Characteristic of a Spark Ignition Engine Using Hydrogen and Compressed Natural Gas. Int. J. Hydrogen Energy, 25, 783-793.
  • Heywood, J. B. (1988). Internal Combustion Engine Fundamentals, First Ed. New York: McGraw-Hill.
  • Igliński, B., Iglińska, A., Kujawski, W., Buczkowski, R., Cichosz, M. (2011). Bioenergy in Poland. Renewable and Sustainable Energy Reviews, 15, 2999– 3007.
  • Leszczynski, S., Brzychczyk, P., Sekula, R. (1997). Review of Biomass as a Source of Energy for Poland. Energy Sources, 19, 845-850.
  • Mancaruso, E., Sequino, L., Vaglieco, B. M. (2011). First and Second Generation Biodiesels Spray Characterization in a Diesel Engine, Fuel, 90, 2870– 28
  • McKendry P. (2002). Energy Production from Biomass (Part 2): Conversion Technologies. Bioresource Technology, 83, 47-54.
  • Porpatham, E., Ramesh, A., Nagalingam, B. (2008). Investigation on the Effect of Concentration of Methane in Biogas when Used as a Fuel for a Spark Ignition Engine. Fuel, 87, 1651–1659.
  • Poulsen, P. H. B., Magid, J., Luxhİi, J., Neergaard, A. (2013). Effects of Fertilization with Urban and Agricultural Organic Wastes in a Field Trial - Waste Imprint on Soil Microbial Activity. Soil Biology and Biochemistry, 57, 794-802.
  • Przybyla, G., Postrzednik, S. (2006). Purposefulness of Using Real Gas Model in Analysis of Internal
  • Combustoin Engine Cycle Parameters. Journal of KONES, 13, 315-322. Silva, M. J., Souza, S. M. N., Chaves, L., Rosa, H. A., Secco, D., Santos, R. F., Baricatti, R. A., Nogueira, C. E. C. (2013). Comparative Analysis of Engine Generator Performance Using Diesel Oil and Biodiesels Available in Parana State, Brazil. Renewable and Sustainable Energy Reviews, 17, 278–282.
  • Stone R. (1999). Introduction to Internal Combustion Engines, (3rd ed.). London: MacMillan Press LTD.
  • Tien, T. M., Mai, P. X., Hung, N. D., Cong, H. T. (2010). A Study on Power Generation System Using Biogas Generated From the Waste of Pig Farm. 2010 International Forum on Strategic Technology (IFOST): Proceedings of IEEE, 203-207.
  • Weaver, C. S. (1989). Natural Gas Vehicles – A Review of the State of the Art. SAE Transactions, 98, 1190-1210.
  • White C. M., Steeper R. R., Lutz A. E. (2006). The Hydrogen – Fueled Internal Combustion Engine: a Technical Review. Int. J. Hydrogen Energy, 10, 1292130
There are 18 citations in total.

Details

Primary Language English
Journal Section Invited CPOTE 2012 Paper for Special Issue
Authors

Grzegorz Przybyla

Andrzej Szlek This is me

Lukasz Ziolkowski This is me

Publication Date December 1, 2013
Published in Issue Year 2013 Volume: 16 Issue: 4

Cite

APA Przybyla, G., Szlek, A., & Ziolkowski, L. (2013). Assessment of The Performance of a Small Capacity SI Engine Fuelled with Model Lean Mixture of Biogas. International Journal of Thermodynamics, 16(4), 179-188.
AMA Przybyla G, Szlek A, Ziolkowski L. Assessment of The Performance of a Small Capacity SI Engine Fuelled with Model Lean Mixture of Biogas. International Journal of Thermodynamics. December 2013;16(4):179-188.
Chicago Przybyla, Grzegorz, Andrzej Szlek, and Lukasz Ziolkowski. “Assessment of The Performance of a Small Capacity SI Engine Fuelled With Model Lean Mixture of Biogas”. International Journal of Thermodynamics 16, no. 4 (December 2013): 179-88.
EndNote Przybyla G, Szlek A, Ziolkowski L (December 1, 2013) Assessment of The Performance of a Small Capacity SI Engine Fuelled with Model Lean Mixture of Biogas. International Journal of Thermodynamics 16 4 179–188.
IEEE G. Przybyla, A. Szlek, and L. Ziolkowski, “Assessment of The Performance of a Small Capacity SI Engine Fuelled with Model Lean Mixture of Biogas”, International Journal of Thermodynamics, vol. 16, no. 4, pp. 179–188, 2013.
ISNAD Przybyla, Grzegorz et al. “Assessment of The Performance of a Small Capacity SI Engine Fuelled With Model Lean Mixture of Biogas”. International Journal of Thermodynamics 16/4 (December 2013), 179-188.
JAMA Przybyla G, Szlek A, Ziolkowski L. Assessment of The Performance of a Small Capacity SI Engine Fuelled with Model Lean Mixture of Biogas. International Journal of Thermodynamics. 2013;16:179–188.
MLA Przybyla, Grzegorz et al. “Assessment of The Performance of a Small Capacity SI Engine Fuelled With Model Lean Mixture of Biogas”. International Journal of Thermodynamics, vol. 16, no. 4, 2013, pp. 179-88.
Vancouver Przybyla G, Szlek A, Ziolkowski L. Assessment of The Performance of a Small Capacity SI Engine Fuelled with Model Lean Mixture of Biogas. International Journal of Thermodynamics. 2013;16(4):179-88.