BibTex RIS Cite

Modeling of a pressurized entrained-flow coal gasifier for power plant simulation

Year 2014, Volume: 17 Issue: 2, 87 - 95, 31.03.2014
https://doi.org/10.5541/ijot.77028

Abstract

Now and in the mid-term future, coal remains an important energy source for electricity generation for reasons of energy supply security and economics. The expectation to get low CO2-emissions and high plant efficiencies, particularly independently of coal quality, makes coal gasification an essential part of numerous innovative power plant concepts. For that reason, simplified and flexible models for coal gasifiers are needed, which can be implemented easily in complex power plant system simulations. A model for an entrained-flow coal gasifier, the Prenflo coal gasification process, based on an equilibrium approach is developed. The created model is validated with operation data published in literature of a demonstration plant in Fürstenhausen (Germany). For all published plant parameters, the calculated values of the model reproduce the operating data fairly precisely. Parametric study for the target application in a hybrid power plant including high temperature fuel cells regarding the gasification temperature and pressure as well as the mass flow ratios of the gasifying agent to coal is presented. Influences of these parameters on product gas composition and efficiency of gasification are investigated. By means of these, the model of the coal gasifier is qualified for implementation in system models such as those of integrated gasification combined cycle and hybrid power plants including high temperature fuel cells.

References

  • M. Krüger, “Process Development for Integrated Coal Gasification SOFC Hybrid Power Plants,” in International Conference on Energy Process Engineering, Dechema, Frankfurt am Main, Germany, 20 M. Krüger, Verfahrensentwicklung für SOFCHybridkraftwerke mit Integrierter Kohlevergasun, (Ph.D. dissertation), University of Stuttgart, Germany, 20 ISBN 978-3-8439-0887-0.
  • A. G. Collot, “Matching Gasifiers to Coals,” CCC / IEA Coal Research, no. 65, IEA Coal Research, The Clean Coal Centre, London, 2002.
  • B. Meyer, “Prozesse mit integrierter Kohlevergasung,” Fortschrittliche Braunkohlenutzung im liberalisierten Strommarkt, VDI-Berichte 1456, Düsseldorf: VDIVerlag, 1999.
  • R. Kloster, “Thermodynamische Analyse und Optimierung von Gas-/Dampfturbinen-KombiKraftwerken mit integrierter Kohlevergasung,” Fortschritt-Berichte VDI Reihe 6, no. 409, Düsseldorf: VDI-Verlag, 1999.
  • C. Higman, M. van der Burgt, Gasification, Oxford: Elsevier, 2003.
  • R. Wetzel, “Kohledruckvergasung (PRENFLOVerfahren),” Schlussbericht: Förderungsvorhaben BMFT, Förderkennzeichen: 0326211 F/G/H, Bundesministerium für Forschung und Technologie (BMFT), Bonn, Germany, 1993.
  • H. C. Pohl, W. Schellberg, “PRENFLO: Das Verfahren zur FlugstromDruckvergasung,” Technische Mitteilungen Krupp, 1987 (2).
  • R. Wetzel, Prenflo – Ein Beitrag zur effizienten, umweltfreundlichen Kohleverstromung, Technische Mitteilungen, 83, 33-38, 1990.
  • T. Kivisaari, P. Björnbom, C. Sylwan, B. Jacquinot, D. Jansen, A. de Groot, The Feasibility of a Coal Gasifier Combined with a Hightemperature Fuel Cell, Chemical Engineering Journal, 100, 167-180, 2004.
  • A. Lokurlu, “Simulation der Oxidkeramischen Brennstoffzelle "SOFC" mit nachgeschalteten Gas- und Dampfturbinen-Kombi-Anlagen für verschiedene Brenngase,” Fortschritt-Berichte VDI Reihe 6, no. 425, Düsseldorf: VDI-Verlag, 1999.
  • S. Li, “Thermodynamic Analysis of Natural Gas and Coal Fuelled Humid Air Turbine Cycles,” FortschrittBerichte VDI Reihe 6, no. 481, Düsseldorf: VDIVerlag, 2002.
  • G. Kovacik, M. Oguztöreli, A. Chambers, B. Özüm, Equilibrium calculations in coal gasification. Int. J. Hydrogen Energy, 15, 125-131, 1990.
  • C. R. Altafini, A. Mirandola, “A Chemical Equilibrium Model of the Coal Gasification Process Based on the Minimization of the Gibbs Free Energy,” Flowers ’97: Florence World Energy Research Symposium: "Clean Energy for the New Century", Dipartimento di Energetica "Sergio Stecco"; Universita degli Studi di Firenze, Florence, Italy, 1997.
  • B. Zaporowski, “Modelling and Simulation of the Process of Coal Gasification,” Gasification for the Future, Noordwijk, The Netherlands, 2000.
  • Q. Ni, A. Williams, A Simulation Study on the Performance of an Entrained-flow Coal Gasifier, Fuel. 74, 102-110, 1995.
  • G. Manfrida, G. Bidini, G. Trebbi, “Modeling Coal Gasification Combined Cycles (CGCC),” A future for energy: Flowers ’90; Proceedings of the Florence Worlds Energy Research Symposium, Florence World Energy Research Symposium, Florence, Italy, 1990.
  • P. Schoen, Dynamic Modeling and Control of Integrated Coal Gasification Combined Cycle Units. (Ph.D. dissertation), Techn. Universiteit Delft, Netherlands, 1993.
  • H. Jüntgen, K. H. van Heek, Kohlevergasung: Grundlagen und technische Anwendung, München: Thiemig, 1981.
  • Müller-Erlwein, E., Chemische Reaktionstechnik, Stuttgart: Teubner, 1998.
  • Aspen Technology, Inc., Aspen Plus: Reference Manuals, Version Number: 2006.5, Cambridge, USA, 200 D. Korobov, “Untersuchung der Wirkungsgradpotentiale von IGCC-Kraftwerkskonzepte,”. Freiberger Forschungshefte Reihe A: Energie, no. 876, Technische Universität Bergakademie Freiberg, 2003.
  • M. Trevino Coca, “Integrated Gasification Combined Cycle Technology: IGCC: Its Actual Application in Spain: ELCOGAS, Puertollano,” ELCOGAS, S.A.; Club Espanol de la Energia, 2003.
  • B. Orlandi, Beitrag zur Implementierung eines neuartigen IGCC/SOFCKraftwerksprozesses in Aspen Plus. (student research project), Institute for Technical Thermodynamics, German Aerospace Center, Stuttgart; Institute for Thermodynamics and Thermal Engineering, Stuttgart University, Germany, 2006.
  • R. Pruschek, G. Oeljeklaus, G. Haupt, G., Zimmermann, Überblick über wirkungsgradsteigernde Maßnahmen bei Kombiprozessen und Verbesserungspotentiale von Kraftwerken mit integrierter Kohlevergasung (IGCC) – Wirkungsgrad, Kostenwirksamkeit und Verfügbarkeit. Entwicklungslinien der Energie- und Kraftwerkstechnik, VDI-Berichte 1280, Düsseldorf: VDI-Verlag, 1996.
  • G. Haupt, G. Zimmermann, H. R. Baumann, N. Ullrich, R. Pruschek, G. Oeljeklaus, “New Design of IGCC for Competitive Power Generation,” Gasification Technologies Conference, Gasification Technologies Council, San Francisco, USA, 1998.
  • G. Haupt, G. Zimmermann, R. Pruschek, G. Oeljeklaus, N. Ullrich, “Modern IGCC Stations as High-Effective Means for CO 2 Reduction,” 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 2000.
  • R. Pruschek, D. Jansen, R. van Ree, R., Korbee, R. P. de Smidt, B. C. Williams, “Advanced Cycle Technologies: Improvement of IGCCs Starting from the State-of-the-Art (Puertollano),” ECN-RX, no. 98-063, Netherlands Energy Research Foundation (ECN), Petten, Netherlands, 1998.
Year 2014, Volume: 17 Issue: 2, 87 - 95, 31.03.2014
https://doi.org/10.5541/ijot.77028

Abstract

References

  • M. Krüger, “Process Development for Integrated Coal Gasification SOFC Hybrid Power Plants,” in International Conference on Energy Process Engineering, Dechema, Frankfurt am Main, Germany, 20 M. Krüger, Verfahrensentwicklung für SOFCHybridkraftwerke mit Integrierter Kohlevergasun, (Ph.D. dissertation), University of Stuttgart, Germany, 20 ISBN 978-3-8439-0887-0.
  • A. G. Collot, “Matching Gasifiers to Coals,” CCC / IEA Coal Research, no. 65, IEA Coal Research, The Clean Coal Centre, London, 2002.
  • B. Meyer, “Prozesse mit integrierter Kohlevergasung,” Fortschrittliche Braunkohlenutzung im liberalisierten Strommarkt, VDI-Berichte 1456, Düsseldorf: VDIVerlag, 1999.
  • R. Kloster, “Thermodynamische Analyse und Optimierung von Gas-/Dampfturbinen-KombiKraftwerken mit integrierter Kohlevergasung,” Fortschritt-Berichte VDI Reihe 6, no. 409, Düsseldorf: VDI-Verlag, 1999.
  • C. Higman, M. van der Burgt, Gasification, Oxford: Elsevier, 2003.
  • R. Wetzel, “Kohledruckvergasung (PRENFLOVerfahren),” Schlussbericht: Förderungsvorhaben BMFT, Förderkennzeichen: 0326211 F/G/H, Bundesministerium für Forschung und Technologie (BMFT), Bonn, Germany, 1993.
  • H. C. Pohl, W. Schellberg, “PRENFLO: Das Verfahren zur FlugstromDruckvergasung,” Technische Mitteilungen Krupp, 1987 (2).
  • R. Wetzel, Prenflo – Ein Beitrag zur effizienten, umweltfreundlichen Kohleverstromung, Technische Mitteilungen, 83, 33-38, 1990.
  • T. Kivisaari, P. Björnbom, C. Sylwan, B. Jacquinot, D. Jansen, A. de Groot, The Feasibility of a Coal Gasifier Combined with a Hightemperature Fuel Cell, Chemical Engineering Journal, 100, 167-180, 2004.
  • A. Lokurlu, “Simulation der Oxidkeramischen Brennstoffzelle "SOFC" mit nachgeschalteten Gas- und Dampfturbinen-Kombi-Anlagen für verschiedene Brenngase,” Fortschritt-Berichte VDI Reihe 6, no. 425, Düsseldorf: VDI-Verlag, 1999.
  • S. Li, “Thermodynamic Analysis of Natural Gas and Coal Fuelled Humid Air Turbine Cycles,” FortschrittBerichte VDI Reihe 6, no. 481, Düsseldorf: VDIVerlag, 2002.
  • G. Kovacik, M. Oguztöreli, A. Chambers, B. Özüm, Equilibrium calculations in coal gasification. Int. J. Hydrogen Energy, 15, 125-131, 1990.
  • C. R. Altafini, A. Mirandola, “A Chemical Equilibrium Model of the Coal Gasification Process Based on the Minimization of the Gibbs Free Energy,” Flowers ’97: Florence World Energy Research Symposium: "Clean Energy for the New Century", Dipartimento di Energetica "Sergio Stecco"; Universita degli Studi di Firenze, Florence, Italy, 1997.
  • B. Zaporowski, “Modelling and Simulation of the Process of Coal Gasification,” Gasification for the Future, Noordwijk, The Netherlands, 2000.
  • Q. Ni, A. Williams, A Simulation Study on the Performance of an Entrained-flow Coal Gasifier, Fuel. 74, 102-110, 1995.
  • G. Manfrida, G. Bidini, G. Trebbi, “Modeling Coal Gasification Combined Cycles (CGCC),” A future for energy: Flowers ’90; Proceedings of the Florence Worlds Energy Research Symposium, Florence World Energy Research Symposium, Florence, Italy, 1990.
  • P. Schoen, Dynamic Modeling and Control of Integrated Coal Gasification Combined Cycle Units. (Ph.D. dissertation), Techn. Universiteit Delft, Netherlands, 1993.
  • H. Jüntgen, K. H. van Heek, Kohlevergasung: Grundlagen und technische Anwendung, München: Thiemig, 1981.
  • Müller-Erlwein, E., Chemische Reaktionstechnik, Stuttgart: Teubner, 1998.
  • Aspen Technology, Inc., Aspen Plus: Reference Manuals, Version Number: 2006.5, Cambridge, USA, 200 D. Korobov, “Untersuchung der Wirkungsgradpotentiale von IGCC-Kraftwerkskonzepte,”. Freiberger Forschungshefte Reihe A: Energie, no. 876, Technische Universität Bergakademie Freiberg, 2003.
  • M. Trevino Coca, “Integrated Gasification Combined Cycle Technology: IGCC: Its Actual Application in Spain: ELCOGAS, Puertollano,” ELCOGAS, S.A.; Club Espanol de la Energia, 2003.
  • B. Orlandi, Beitrag zur Implementierung eines neuartigen IGCC/SOFCKraftwerksprozesses in Aspen Plus. (student research project), Institute for Technical Thermodynamics, German Aerospace Center, Stuttgart; Institute for Thermodynamics and Thermal Engineering, Stuttgart University, Germany, 2006.
  • R. Pruschek, G. Oeljeklaus, G. Haupt, G., Zimmermann, Überblick über wirkungsgradsteigernde Maßnahmen bei Kombiprozessen und Verbesserungspotentiale von Kraftwerken mit integrierter Kohlevergasung (IGCC) – Wirkungsgrad, Kostenwirksamkeit und Verfügbarkeit. Entwicklungslinien der Energie- und Kraftwerkstechnik, VDI-Berichte 1280, Düsseldorf: VDI-Verlag, 1996.
  • G. Haupt, G. Zimmermann, H. R. Baumann, N. Ullrich, R. Pruschek, G. Oeljeklaus, “New Design of IGCC for Competitive Power Generation,” Gasification Technologies Conference, Gasification Technologies Council, San Francisco, USA, 1998.
  • G. Haupt, G. Zimmermann, R. Pruschek, G. Oeljeklaus, N. Ullrich, “Modern IGCC Stations as High-Effective Means for CO 2 Reduction,” 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 2000.
  • R. Pruschek, D. Jansen, R. van Ree, R., Korbee, R. P. de Smidt, B. C. Williams, “Advanced Cycle Technologies: Improvement of IGCCs Starting from the State-of-the-Art (Puertollano),” ECN-RX, no. 98-063, Netherlands Energy Research Foundation (ECN), Petten, Netherlands, 1998.
There are 26 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Michael Krüger

Publication Date March 31, 2014
Published in Issue Year 2014 Volume: 17 Issue: 2

Cite

APA Krüger, M. (2014). Modeling of a pressurized entrained-flow coal gasifier for power plant simulation. International Journal of Thermodynamics, 17(2), 87-95. https://doi.org/10.5541/ijot.77028
AMA Krüger M. Modeling of a pressurized entrained-flow coal gasifier for power plant simulation. International Journal of Thermodynamics. March 2014;17(2):87-95. doi:10.5541/ijot.77028
Chicago Krüger, Michael. “Modeling of a Pressurized Entrained-Flow Coal Gasifier for Power Plant Simulation”. International Journal of Thermodynamics 17, no. 2 (March 2014): 87-95. https://doi.org/10.5541/ijot.77028.
EndNote Krüger M (March 1, 2014) Modeling of a pressurized entrained-flow coal gasifier for power plant simulation. International Journal of Thermodynamics 17 2 87–95.
IEEE M. Krüger, “Modeling of a pressurized entrained-flow coal gasifier for power plant simulation”, International Journal of Thermodynamics, vol. 17, no. 2, pp. 87–95, 2014, doi: 10.5541/ijot.77028.
ISNAD Krüger, Michael. “Modeling of a Pressurized Entrained-Flow Coal Gasifier for Power Plant Simulation”. International Journal of Thermodynamics 17/2 (March 2014), 87-95. https://doi.org/10.5541/ijot.77028.
JAMA Krüger M. Modeling of a pressurized entrained-flow coal gasifier for power plant simulation. International Journal of Thermodynamics. 2014;17:87–95.
MLA Krüger, Michael. “Modeling of a Pressurized Entrained-Flow Coal Gasifier for Power Plant Simulation”. International Journal of Thermodynamics, vol. 17, no. 2, 2014, pp. 87-95, doi:10.5541/ijot.77028.
Vancouver Krüger M. Modeling of a pressurized entrained-flow coal gasifier for power plant simulation. International Journal of Thermodynamics. 2014;17(2):87-95.