BibTex RIS Cite

Vehicle Level Tip-to-Tail Modeling of an Aircraft

Year 2014, Volume: 17 Issue: 2, 107 - 115, 31.03.2014
https://doi.org/10.5541/ijot.77031

Abstract

A system-level multidisciplinary aircraft model has been developed exclusively in MATLAB/Simulink. Aircraft subsystem models representing the air vehicle system, propulsion system, robust electrical power system, thermal management systems, actuation system and their associated controllers were integrated to investigate the thermal management issues of a long range strike platform. The aircraft model coined tip-to-tail modeling and simulation tool (T2T M&S) allows conceptual design trade studies of various subsystems and can quantify performance gains across the aircraft. As a result, the thermal and power challenges that face modern aircraft can be addressed, potentially increasing the performance capabilities of future aircraft. Preliminary simulation results are discussed with a specific focus on thermal management during mission segments of high thermal demands.

References

  • M. Amrhein, J. R. Wells, E. A. Walters, A. F. Matasso, T. R. Erdman, S. M. Iden, P. L. Lamm, A. M. Page, and I. H. Wong, “Integrated Electrical System Model of a More Electric Aircraft Architecture,” in SAE: Power Systems Conference, Seattle, WA, 2008.
  • P. Weise, G. Gvozdich, and M. R. Von Spakovsky, “INVENT: Study of the Issues Involved in Integrating a Directed Energy Weapons Subsystem into a High Performance Aircraft System,” in AIAA: Aerospace Sciences Meeting, Nashville, TN, 2012.
  • S. P. Mahulikar, H. R. Sonawane, and G. Arvind Rao, Infrared signature studies of aerospace vehicles, Prog. Aerosp. Sci., 43, 218-245, 2007.
  • J. R. Wells, M. Amrhein, E. A. Walters, S. M. Iden, A. M. Page, P. L. Lamm, and A. F. Matasso, Electrical Accumulator Unit for the Energy Optimized Aircraft, SAE Int. J. Aerosp., 1, 1071-1077, 2008.
  • W. Lee, D. Choi, and M. Sunwoo, Modelling and simulation of vehicle electric power system, J. Power Sources, 109, 58-66, 2002.
  • H. S. Hamut, I. Dincer, and G. F. Naterer, Analysis and optimization of hybrid electric vehicle thermal management systems, J. Power Sources, 247, 643654, 2014.
  • M. Wolff, K. McCarthy, G. Russell, J. Zumberge, M. Bodie, and E. Lucas, “Thermal Analysis of an Integrated Aircraft Model,” in AIAA: Aerospace Sciences Meeting, Orlando, FL, 2010.
  • K. Mccarthy, M. Amrhein, P. L. Lamm, M. Wolff, K. Yerkes, O. Connell, B. Raczkowski, J. R. Wells, and W. Borger, “INVENT Modeling, Simulation, Analysis and Optimization,” in AIAA: Aerospace Sciences Meeting, Orlando, FL, 2010.
  • A. C. Maser, E. Garcia, and D. N. Mavris, “Thermal Management Modeling for Integrated Power Systems in a Transient, Multidisciplinary Environment,” in AIAA/ASME/SAE/ASEE: Joint Propulsion Conference & Exhibit, Denver, CO, 2009.
  • F. Uriz Jauregui, B. Remy, A. Degiovanni, and O. Verseux, Model identificaton for temperature extrapolation in aircraft powerplant systems, Int. J. Therm. Sci., 64, 162-177, 2013.
  • S. M. Eastbourn, 2012, Modeling and Simulation of a Dynamic Turbofan Engine Using Simulink (Master thesis), Wright State University, Dayton, OH.
  • S. M. Eastbourn and R. A. Roberts, “Modeling and Simulation of a Dynamic Turbofan Engine Using Simulink,” in AIAA/ASME/SAE/ASEE: Joint Propulsion Conference & Exhibit, San Diego, CA, 20 R. Chacartegui, D. Sánchez, a. Muñoz, and T. Sánchez, Real time simulation of medium size gas turbines, Energy Convers. Manag., 52, 713-724, 2011. R. A. Roberts and J. H. Doty, “Implementation of a Non-Equilibrium Exergy Analysis for an Aircraft Thermal Management System,” in AIAA: Aerospace Sciences Meeting, Nashville, TN, 2012.
  • F. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 4th Ed. New York, NY: John Wiley & Sons, Inc, 2000.
  • Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 6th Ed. New York, NY: McGraw-Hill, 2008.
Year 2014, Volume: 17 Issue: 2, 107 - 115, 31.03.2014
https://doi.org/10.5541/ijot.77031

Abstract

References

  • M. Amrhein, J. R. Wells, E. A. Walters, A. F. Matasso, T. R. Erdman, S. M. Iden, P. L. Lamm, A. M. Page, and I. H. Wong, “Integrated Electrical System Model of a More Electric Aircraft Architecture,” in SAE: Power Systems Conference, Seattle, WA, 2008.
  • P. Weise, G. Gvozdich, and M. R. Von Spakovsky, “INVENT: Study of the Issues Involved in Integrating a Directed Energy Weapons Subsystem into a High Performance Aircraft System,” in AIAA: Aerospace Sciences Meeting, Nashville, TN, 2012.
  • S. P. Mahulikar, H. R. Sonawane, and G. Arvind Rao, Infrared signature studies of aerospace vehicles, Prog. Aerosp. Sci., 43, 218-245, 2007.
  • J. R. Wells, M. Amrhein, E. A. Walters, S. M. Iden, A. M. Page, P. L. Lamm, and A. F. Matasso, Electrical Accumulator Unit for the Energy Optimized Aircraft, SAE Int. J. Aerosp., 1, 1071-1077, 2008.
  • W. Lee, D. Choi, and M. Sunwoo, Modelling and simulation of vehicle electric power system, J. Power Sources, 109, 58-66, 2002.
  • H. S. Hamut, I. Dincer, and G. F. Naterer, Analysis and optimization of hybrid electric vehicle thermal management systems, J. Power Sources, 247, 643654, 2014.
  • M. Wolff, K. McCarthy, G. Russell, J. Zumberge, M. Bodie, and E. Lucas, “Thermal Analysis of an Integrated Aircraft Model,” in AIAA: Aerospace Sciences Meeting, Orlando, FL, 2010.
  • K. Mccarthy, M. Amrhein, P. L. Lamm, M. Wolff, K. Yerkes, O. Connell, B. Raczkowski, J. R. Wells, and W. Borger, “INVENT Modeling, Simulation, Analysis and Optimization,” in AIAA: Aerospace Sciences Meeting, Orlando, FL, 2010.
  • A. C. Maser, E. Garcia, and D. N. Mavris, “Thermal Management Modeling for Integrated Power Systems in a Transient, Multidisciplinary Environment,” in AIAA/ASME/SAE/ASEE: Joint Propulsion Conference & Exhibit, Denver, CO, 2009.
  • F. Uriz Jauregui, B. Remy, A. Degiovanni, and O. Verseux, Model identificaton for temperature extrapolation in aircraft powerplant systems, Int. J. Therm. Sci., 64, 162-177, 2013.
  • S. M. Eastbourn, 2012, Modeling and Simulation of a Dynamic Turbofan Engine Using Simulink (Master thesis), Wright State University, Dayton, OH.
  • S. M. Eastbourn and R. A. Roberts, “Modeling and Simulation of a Dynamic Turbofan Engine Using Simulink,” in AIAA/ASME/SAE/ASEE: Joint Propulsion Conference & Exhibit, San Diego, CA, 20 R. Chacartegui, D. Sánchez, a. Muñoz, and T. Sánchez, Real time simulation of medium size gas turbines, Energy Convers. Manag., 52, 713-724, 2011. R. A. Roberts and J. H. Doty, “Implementation of a Non-Equilibrium Exergy Analysis for an Aircraft Thermal Management System,” in AIAA: Aerospace Sciences Meeting, Nashville, TN, 2012.
  • F. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 4th Ed. New York, NY: John Wiley & Sons, Inc, 2000.
  • Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 6th Ed. New York, NY: McGraw-Hill, 2008.
There are 14 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Rory Roberts

Scott Eastbourn This is me

Publication Date March 31, 2014
Published in Issue Year 2014 Volume: 17 Issue: 2

Cite

APA Roberts, R., & Eastbourn, S. (2014). Vehicle Level Tip-to-Tail Modeling of an Aircraft. International Journal of Thermodynamics, 17(2), 107-115. https://doi.org/10.5541/ijot.77031
AMA Roberts R, Eastbourn S. Vehicle Level Tip-to-Tail Modeling of an Aircraft. International Journal of Thermodynamics. March 2014;17(2):107-115. doi:10.5541/ijot.77031
Chicago Roberts, Rory, and Scott Eastbourn. “Vehicle Level Tip-to-Tail Modeling of an Aircraft”. International Journal of Thermodynamics 17, no. 2 (March 2014): 107-15. https://doi.org/10.5541/ijot.77031.
EndNote Roberts R, Eastbourn S (March 1, 2014) Vehicle Level Tip-to-Tail Modeling of an Aircraft. International Journal of Thermodynamics 17 2 107–115.
IEEE R. Roberts and S. Eastbourn, “Vehicle Level Tip-to-Tail Modeling of an Aircraft”, International Journal of Thermodynamics, vol. 17, no. 2, pp. 107–115, 2014, doi: 10.5541/ijot.77031.
ISNAD Roberts, Rory - Eastbourn, Scott. “Vehicle Level Tip-to-Tail Modeling of an Aircraft”. International Journal of Thermodynamics 17/2 (March 2014), 107-115. https://doi.org/10.5541/ijot.77031.
JAMA Roberts R, Eastbourn S. Vehicle Level Tip-to-Tail Modeling of an Aircraft. International Journal of Thermodynamics. 2014;17:107–115.
MLA Roberts, Rory and Scott Eastbourn. “Vehicle Level Tip-to-Tail Modeling of an Aircraft”. International Journal of Thermodynamics, vol. 17, no. 2, 2014, pp. 107-15, doi:10.5541/ijot.77031.
Vancouver Roberts R, Eastbourn S. Vehicle Level Tip-to-Tail Modeling of an Aircraft. International Journal of Thermodynamics. 2014;17(2):107-15.

Cited By