BibTex RIS Cite

Second Law Optimization of a PCM Based Latent Heat Thermal Energy Storage System with Tree Shaped Fins

Year 2014, Volume: 17 Issue: 3, 145 - 154, 24.09.2014
https://doi.org/10.5541/ijot.549

Abstract

The aim of this paper is to perform a thermodynamic optimization of a Y shaped fin design used to improve thermal performance of a latent heat thermal energy storage (LHTES) unit. The investigation is performed through a CFD model that takes into account the thermal behavior of the system. Temperature and phase fields are obtained to characterize the heat transfer phenomenon and to compute the entropy generation rate within the system. Global entropy generation and energy flux are adopted as objective functions to perform a shape optimization of the Y shaped fins with angles and branches lengths that can vary freely. The optimization results indicate that a higher energy transfer is achieved by a fin configuration with long secondary branches with an orientation angle of 30°. This design allows one to increase PCM solidification rate of about 30%. Furthermore, Y-shaped fins allow to increase the exergy flux released by the PCM, thus Second-law efficiency is not affected although entropy generation increases. This work represents the first detailed thermodynamic optimization of a system involving an unsteady process. This aspect is particularly important since a clear tendency of many energy systems is toward transient operation, thus design optimization methods should evolve accordingly.

References

  • B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. Thermal Eng., 23, 251–283, 20 F. Agyenim, N. Hewintt, P. Eames, M. Smyth, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renewable Sustainable Energy Reviews, 14, 615-628, 2010.
  • L. F. Cabeza, H. Mehling, S. Hiebler, F. Ziegler, Heat transfer enhancement in water when used as PCM in thermal energy storage, Appl. Thermal Eng., 22, 1141–1151, 2002.
  • S. Pincemin, R. Olives, X. Py, M. Christ, Highly conductive composites made of phase change materials and graphite for thermal storage, Solar Energy Mater. Solar Cells, 92, 603–613, 2008.
  • F. Colella, A. Sciacovelli, V. Verda, Numerical analysis of a medium scale latent energy storage unit for district heating systems, Energy, 45, 397-406, 20 A. F. Regin, S. C. Solanki, J. S. Saini, Heat transfer characteristics of thermal energy storage system using PCM capsules: A review, Renewable Sustainable Energy Reviews, 12, 2438–2458, 2008.
  • E. S. Mettawee, G. M. R. Assassa, Thermal conductivity enhancement in a latent heat storage system, Solar Energy, 81, 839–845, 2007.
  • S. Kalaiselvam, R. Parameshwaran, S. Harikrishnan, Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings, Renewable Energy, 39(1), 375–387, 2012.
  • A. Sciacovelli, F. Colella, V. Verda, Melting of PCM in a thermal energy storage unit: numerical investigation and effect of nanoparticle enhancement, Int. J. Energy Res., 37, 1610-1623, 20
  • L. Fan, J.M. Khodadadi, Thermal conductivity enhancement of phase change materials for thermal energy storage: A review, Renewable Sustainable Energy Reviews, 15, 24–46, 2011.
  • M. Lacroix, Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube, International Journal of Heat Mass Transfer, 36, 2083–2092, 1993.
  • A. Erek, Z. Ilken, M. A. Acar. Experimental and numerical investigation of thermal energy storage with a finned tube, International Journal of Energy Research, 29, 283–301, 2005.
  • F. Agyenim, P. Eames, M. Smyth, A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fin, Solar Energy, 83, 1509–1520, 2009.
  • A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman, Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers, Applied Thermal Engineering, 53, 147-156, 2013.
  • A. Bejan, S. Lorente, Constructal law of design and evolution: Physics, biology, technology, and society, Journal of Applied Physics, 113, 151301, 2013.
  • A. Sciacovelli, C. Amelio, C. Repetto, V. Verda, G. Diaz, Performance Improvement of a circular MCFC through optimal design of the fluid distribution system, J. Fuel Cell Sci. Technol., 9, 041011, 2012.
  • H. Kobayashi, S. Lorente, R. Anderson, A. Bejan, Trees and serpentines in a conductive body, Int. J. Heat Mass Transfer, 56, 4887-4494, 2013.
  • A. Bejan, Entropy Generation Minimization. Boca Raton, FL: CRC Press, 1996.
  • H. Shabgad, T. L. Bergman, A. Faghri, Exergy analysis of latent heat thermal energy storage for solar power generation accounting for constraints imposed by long-term operation and the solar day, Energy, 60, 474484, 2014.
  • M.A. Ezan, A. Erek, I. Dincer, Energy and exergy analyses of an ice-on-coil thermal energy storage system, Energy, 36, 6375-6386, 2011.
  • A. Erek, I. Dincer, An approach to entropy analysis of a latent heat storage module, Int. J. Thermal Sci., 47, 1077-1085, 2008.
  • S. Jegadheeswaran, S. D. Pohekar, T. Kousksou, Exergy based performance evaluation of latent heat thermal storage system: A review, Renewable Sustainable Energy Reviews, 14, 2580–2595, 2010.
  • E. Guelpa, A. Sciacovelli, V. Verda, Entropy generation analysis for the design improvement of a latent heat storage system, Energy, 53, 128-138, 2013.
  • S. Jegadheeswaran, D. P. Sanjay, Performance enhancement in latent heat thermal storage system: a review, Renewable Sustainable Energy Reviews, 13, 2225-2244, 2009.
  • S. Kuravi, J. Trahan, M. M. Rahman, D. Y. Goswami, E. K. Stefanokos, Analysis of the transient heat transfer in a thermal energy storage module. in Proceedings of the ASME International Mechanical Engineering Congress & Exposition 2010 IMECE10, Boston, USA, 1251-1258, 2010.
  • V. R. Voller, C. Prakash, A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems, International Journal of Heat and Mass Transfer, 30, 1709-1719, 1987.
  • A. Al-Abidi, S. B. Mat, K. Sopian, M. Y. Sulaiman, A.Th. Mohammed, CFD applications for latent heat thermal energy storage: a review, Renewable and Sustainable Energy Reviews, 20, 353-363, 2013
  • B. J. Jones, D. Sun, S. Krishnan, S. V. Garimella, (2006). Experimental and numerical study of melting in a cylinder, International Journal of Heat and Mass Transfer, 49, 2724-2738, 2006.
  • V. D. Zimparov, A. K. da Silva, A. Bejan, Thermodynamic Optimization of Tree-Shaped Flow Geometries, International Journal of Heat Mass Transfer, 49, 1619–1630, 2006.
  • A. Sciacovelli, V. Verda, Entropy Generation Minimization for the Optimal Design of the Fluid Distribution System in a Circular MCFC, International Journal of Thermodynamics, 14(4), 167-177, 2011.
  • S. R. de Groot, P. Mazur, Non-equilibrium thermodynamics. NY: Dover Publications, 2011.
  • A. Sciacovelli, V. Verda, Entropy Generation Minimization in a Tubular Solid Oxide Fuel Cell, Journal of Energy Resources and Technology, Transaction of the ASME, 132(1), 0126011-01260111, 20
  • D. Kalyanmoy, A Fast and Elitist Multiobjective Genetic Algorithm, IEEE Transaction on evolutionary computation, 6, 182-197, 2002. 136 / Vol. 17 (No. 3) Int. Centre for Applied Thermodynamics (ICAT)
Year 2014, Volume: 17 Issue: 3, 145 - 154, 24.09.2014
https://doi.org/10.5541/ijot.549

Abstract

References

  • B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. Thermal Eng., 23, 251–283, 20 F. Agyenim, N. Hewintt, P. Eames, M. Smyth, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renewable Sustainable Energy Reviews, 14, 615-628, 2010.
  • L. F. Cabeza, H. Mehling, S. Hiebler, F. Ziegler, Heat transfer enhancement in water when used as PCM in thermal energy storage, Appl. Thermal Eng., 22, 1141–1151, 2002.
  • S. Pincemin, R. Olives, X. Py, M. Christ, Highly conductive composites made of phase change materials and graphite for thermal storage, Solar Energy Mater. Solar Cells, 92, 603–613, 2008.
  • F. Colella, A. Sciacovelli, V. Verda, Numerical analysis of a medium scale latent energy storage unit for district heating systems, Energy, 45, 397-406, 20 A. F. Regin, S. C. Solanki, J. S. Saini, Heat transfer characteristics of thermal energy storage system using PCM capsules: A review, Renewable Sustainable Energy Reviews, 12, 2438–2458, 2008.
  • E. S. Mettawee, G. M. R. Assassa, Thermal conductivity enhancement in a latent heat storage system, Solar Energy, 81, 839–845, 2007.
  • S. Kalaiselvam, R. Parameshwaran, S. Harikrishnan, Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings, Renewable Energy, 39(1), 375–387, 2012.
  • A. Sciacovelli, F. Colella, V. Verda, Melting of PCM in a thermal energy storage unit: numerical investigation and effect of nanoparticle enhancement, Int. J. Energy Res., 37, 1610-1623, 20
  • L. Fan, J.M. Khodadadi, Thermal conductivity enhancement of phase change materials for thermal energy storage: A review, Renewable Sustainable Energy Reviews, 15, 24–46, 2011.
  • M. Lacroix, Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube, International Journal of Heat Mass Transfer, 36, 2083–2092, 1993.
  • A. Erek, Z. Ilken, M. A. Acar. Experimental and numerical investigation of thermal energy storage with a finned tube, International Journal of Energy Research, 29, 283–301, 2005.
  • F. Agyenim, P. Eames, M. Smyth, A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fin, Solar Energy, 83, 1509–1520, 2009.
  • A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman, Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers, Applied Thermal Engineering, 53, 147-156, 2013.
  • A. Bejan, S. Lorente, Constructal law of design and evolution: Physics, biology, technology, and society, Journal of Applied Physics, 113, 151301, 2013.
  • A. Sciacovelli, C. Amelio, C. Repetto, V. Verda, G. Diaz, Performance Improvement of a circular MCFC through optimal design of the fluid distribution system, J. Fuel Cell Sci. Technol., 9, 041011, 2012.
  • H. Kobayashi, S. Lorente, R. Anderson, A. Bejan, Trees and serpentines in a conductive body, Int. J. Heat Mass Transfer, 56, 4887-4494, 2013.
  • A. Bejan, Entropy Generation Minimization. Boca Raton, FL: CRC Press, 1996.
  • H. Shabgad, T. L. Bergman, A. Faghri, Exergy analysis of latent heat thermal energy storage for solar power generation accounting for constraints imposed by long-term operation and the solar day, Energy, 60, 474484, 2014.
  • M.A. Ezan, A. Erek, I. Dincer, Energy and exergy analyses of an ice-on-coil thermal energy storage system, Energy, 36, 6375-6386, 2011.
  • A. Erek, I. Dincer, An approach to entropy analysis of a latent heat storage module, Int. J. Thermal Sci., 47, 1077-1085, 2008.
  • S. Jegadheeswaran, S. D. Pohekar, T. Kousksou, Exergy based performance evaluation of latent heat thermal storage system: A review, Renewable Sustainable Energy Reviews, 14, 2580–2595, 2010.
  • E. Guelpa, A. Sciacovelli, V. Verda, Entropy generation analysis for the design improvement of a latent heat storage system, Energy, 53, 128-138, 2013.
  • S. Jegadheeswaran, D. P. Sanjay, Performance enhancement in latent heat thermal storage system: a review, Renewable Sustainable Energy Reviews, 13, 2225-2244, 2009.
  • S. Kuravi, J. Trahan, M. M. Rahman, D. Y. Goswami, E. K. Stefanokos, Analysis of the transient heat transfer in a thermal energy storage module. in Proceedings of the ASME International Mechanical Engineering Congress & Exposition 2010 IMECE10, Boston, USA, 1251-1258, 2010.
  • V. R. Voller, C. Prakash, A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems, International Journal of Heat and Mass Transfer, 30, 1709-1719, 1987.
  • A. Al-Abidi, S. B. Mat, K. Sopian, M. Y. Sulaiman, A.Th. Mohammed, CFD applications for latent heat thermal energy storage: a review, Renewable and Sustainable Energy Reviews, 20, 353-363, 2013
  • B. J. Jones, D. Sun, S. Krishnan, S. V. Garimella, (2006). Experimental and numerical study of melting in a cylinder, International Journal of Heat and Mass Transfer, 49, 2724-2738, 2006.
  • V. D. Zimparov, A. K. da Silva, A. Bejan, Thermodynamic Optimization of Tree-Shaped Flow Geometries, International Journal of Heat Mass Transfer, 49, 1619–1630, 2006.
  • A. Sciacovelli, V. Verda, Entropy Generation Minimization for the Optimal Design of the Fluid Distribution System in a Circular MCFC, International Journal of Thermodynamics, 14(4), 167-177, 2011.
  • S. R. de Groot, P. Mazur, Non-equilibrium thermodynamics. NY: Dover Publications, 2011.
  • A. Sciacovelli, V. Verda, Entropy Generation Minimization in a Tubular Solid Oxide Fuel Cell, Journal of Energy Resources and Technology, Transaction of the ASME, 132(1), 0126011-01260111, 20
  • D. Kalyanmoy, A Fast and Elitist Multiobjective Genetic Algorithm, IEEE Transaction on evolutionary computation, 6, 182-197, 2002. 136 / Vol. 17 (No. 3) Int. Centre for Applied Thermodynamics (ICAT)
There are 31 citations in total.

Details

Primary Language English
Journal Section Invited ECOS Papers
Authors

A. Sciacovelli This is me

E. Guelpa

V. Verda

Publication Date September 24, 2014
Published in Issue Year 2014 Volume: 17 Issue: 3

Cite

APA Sciacovelli, A., Guelpa, E., & Verda, V. (2014). Second Law Optimization of a PCM Based Latent Heat Thermal Energy Storage System with Tree Shaped Fins. International Journal of Thermodynamics, 17(3), 145-154. https://doi.org/10.5541/ijot.549
AMA Sciacovelli A, Guelpa E, Verda V. Second Law Optimization of a PCM Based Latent Heat Thermal Energy Storage System with Tree Shaped Fins. International Journal of Thermodynamics. September 2014;17(3):145-154. doi:10.5541/ijot.549
Chicago Sciacovelli, A., E. Guelpa, and V. Verda. “Second Law Optimization of a PCM Based Latent Heat Thermal Energy Storage System With Tree Shaped Fins”. International Journal of Thermodynamics 17, no. 3 (September 2014): 145-54. https://doi.org/10.5541/ijot.549.
EndNote Sciacovelli A, Guelpa E, Verda V (September 1, 2014) Second Law Optimization of a PCM Based Latent Heat Thermal Energy Storage System with Tree Shaped Fins. International Journal of Thermodynamics 17 3 145–154.
IEEE A. Sciacovelli, E. Guelpa, and V. Verda, “Second Law Optimization of a PCM Based Latent Heat Thermal Energy Storage System with Tree Shaped Fins”, International Journal of Thermodynamics, vol. 17, no. 3, pp. 145–154, 2014, doi: 10.5541/ijot.549.
ISNAD Sciacovelli, A. et al. “Second Law Optimization of a PCM Based Latent Heat Thermal Energy Storage System With Tree Shaped Fins”. International Journal of Thermodynamics 17/3 (September 2014), 145-154. https://doi.org/10.5541/ijot.549.
JAMA Sciacovelli A, Guelpa E, Verda V. Second Law Optimization of a PCM Based Latent Heat Thermal Energy Storage System with Tree Shaped Fins. International Journal of Thermodynamics. 2014;17:145–154.
MLA Sciacovelli, A. et al. “Second Law Optimization of a PCM Based Latent Heat Thermal Energy Storage System With Tree Shaped Fins”. International Journal of Thermodynamics, vol. 17, no. 3, 2014, pp. 145-54, doi:10.5541/ijot.549.
Vancouver Sciacovelli A, Guelpa E, Verda V. Second Law Optimization of a PCM Based Latent Heat Thermal Energy Storage System with Tree Shaped Fins. International Journal of Thermodynamics. 2014;17(3):145-54.

Cited By